Jakob Borg 65aaa607ab Use Go 1.5 vendoring instead of Godeps
Change made by:

- running "gvt fetch" on each of the packages mentioned in
  Godeps/Godeps.json
- `rm -rf Godeps`
- tweaking the build scripts to not mention Godeps
- tweaking the build scripts to test `./lib/...`, `./cmd/...` explicitly
  (to avoid testing vendor)
- tweaking the build scripts to not juggle GOPATH for Godeps and instead
  set GO15VENDOREXPERIMENT.

This also results in some updated packages at the same time I bet.

Building with Go 1.3 and 1.4 still *works* but won't use our vendored
dependencies - the user needs to have the actual packages in their
GOPATH then, which they'll get with a normal "go get". Building with Go
1.6+ will get our vendored dependencies by default even when not using
our build script, which is nice.

By doing this we gain some freedom in that we can pick and choose
manually what to include in vendor, as it's not based on just dependency
analysis of our own code. This is also a risk as we might pick up
dependencies we are unaware of, as the build may work locally with those
packages present in GOPATH. On the other hand the build server will
detect this as it has no packages in it's GOPATH beyond what is included
in the repo.

Recommended tool to manage dependencies is github.com/FiloSottile/gvt.
2016-03-05 21:21:24 +01:00

827 lines
17 KiB
Go

// Copyright (c) 2012, Suryandaru Triandana <syndtr@gmail.com>
// All rights reserved.
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
package leveldb
import (
"sync"
"time"
"github.com/syndtr/goleveldb/leveldb/errors"
"github.com/syndtr/goleveldb/leveldb/opt"
"github.com/syndtr/goleveldb/leveldb/storage"
)
var (
errCompactionTransactExiting = errors.New("leveldb: compaction transact exiting")
)
type cStat struct {
duration time.Duration
read int64
write int64
}
func (p *cStat) add(n *cStatStaging) {
p.duration += n.duration
p.read += n.read
p.write += n.write
}
func (p *cStat) get() (duration time.Duration, read, write int64) {
return p.duration, p.read, p.write
}
type cStatStaging struct {
start time.Time
duration time.Duration
on bool
read int64
write int64
}
func (p *cStatStaging) startTimer() {
if !p.on {
p.start = time.Now()
p.on = true
}
}
func (p *cStatStaging) stopTimer() {
if p.on {
p.duration += time.Since(p.start)
p.on = false
}
}
type cStats struct {
lk sync.Mutex
stats []cStat
}
func (p *cStats) addStat(level int, n *cStatStaging) {
p.lk.Lock()
if level >= len(p.stats) {
newStats := make([]cStat, level+1)
copy(newStats, p.stats)
p.stats = newStats
}
p.stats[level].add(n)
p.lk.Unlock()
}
func (p *cStats) getStat(level int) (duration time.Duration, read, write int64) {
p.lk.Lock()
defer p.lk.Unlock()
if level < len(p.stats) {
return p.stats[level].get()
}
return
}
func (db *DB) compactionError() {
var err error
noerr:
// No error.
for {
select {
case err = <-db.compErrSetC:
switch {
case err == nil:
case err == ErrReadOnly, errors.IsCorrupted(err):
goto hasperr
default:
goto haserr
}
case _, _ = <-db.closeC:
return
}
}
haserr:
// Transient error.
for {
select {
case db.compErrC <- err:
case err = <-db.compErrSetC:
switch {
case err == nil:
goto noerr
case err == ErrReadOnly, errors.IsCorrupted(err):
goto hasperr
default:
}
case _, _ = <-db.closeC:
return
}
}
hasperr:
// Persistent error.
for {
select {
case db.compErrC <- err:
case db.compPerErrC <- err:
case db.writeLockC <- struct{}{}:
// Hold write lock, so that write won't pass-through.
db.compWriteLocking = true
case _, _ = <-db.closeC:
if db.compWriteLocking {
// We should release the lock or Close will hang.
<-db.writeLockC
}
return
}
}
}
type compactionTransactCounter int
func (cnt *compactionTransactCounter) incr() {
*cnt++
}
type compactionTransactInterface interface {
run(cnt *compactionTransactCounter) error
revert() error
}
func (db *DB) compactionTransact(name string, t compactionTransactInterface) {
defer func() {
if x := recover(); x != nil {
if x == errCompactionTransactExiting {
if err := t.revert(); err != nil {
db.logf("%s revert error %q", name, err)
}
}
panic(x)
}
}()
const (
backoffMin = 1 * time.Second
backoffMax = 8 * time.Second
backoffMul = 2 * time.Second
)
var (
backoff = backoffMin
backoffT = time.NewTimer(backoff)
lastCnt = compactionTransactCounter(0)
disableBackoff = db.s.o.GetDisableCompactionBackoff()
)
for n := 0; ; n++ {
// Check wether the DB is closed.
if db.isClosed() {
db.logf("%s exiting", name)
db.compactionExitTransact()
} else if n > 0 {
db.logf("%s retrying N·%d", name, n)
}
// Execute.
cnt := compactionTransactCounter(0)
err := t.run(&cnt)
if err != nil {
db.logf("%s error I·%d %q", name, cnt, err)
}
// Set compaction error status.
select {
case db.compErrSetC <- err:
case perr := <-db.compPerErrC:
if err != nil {
db.logf("%s exiting (persistent error %q)", name, perr)
db.compactionExitTransact()
}
case _, _ = <-db.closeC:
db.logf("%s exiting", name)
db.compactionExitTransact()
}
if err == nil {
return
}
if errors.IsCorrupted(err) {
db.logf("%s exiting (corruption detected)", name)
db.compactionExitTransact()
}
if !disableBackoff {
// Reset backoff duration if counter is advancing.
if cnt > lastCnt {
backoff = backoffMin
lastCnt = cnt
}
// Backoff.
backoffT.Reset(backoff)
if backoff < backoffMax {
backoff *= backoffMul
if backoff > backoffMax {
backoff = backoffMax
}
}
select {
case <-backoffT.C:
case _, _ = <-db.closeC:
db.logf("%s exiting", name)
db.compactionExitTransact()
}
}
}
}
type compactionTransactFunc struct {
runFunc func(cnt *compactionTransactCounter) error
revertFunc func() error
}
func (t *compactionTransactFunc) run(cnt *compactionTransactCounter) error {
return t.runFunc(cnt)
}
func (t *compactionTransactFunc) revert() error {
if t.revertFunc != nil {
return t.revertFunc()
}
return nil
}
func (db *DB) compactionTransactFunc(name string, run func(cnt *compactionTransactCounter) error, revert func() error) {
db.compactionTransact(name, &compactionTransactFunc{run, revert})
}
func (db *DB) compactionExitTransact() {
panic(errCompactionTransactExiting)
}
func (db *DB) compactionCommit(name string, rec *sessionRecord) {
db.compCommitLk.Lock()
defer db.compCommitLk.Unlock() // Defer is necessary.
db.compactionTransactFunc(name+"@commit", func(cnt *compactionTransactCounter) error {
return db.s.commit(rec)
}, nil)
}
func (db *DB) memCompaction() {
mdb := db.getFrozenMem()
if mdb == nil {
return
}
defer mdb.decref()
db.logf("memdb@flush N·%d S·%s", mdb.Len(), shortenb(mdb.Size()))
// Don't compact empty memdb.
if mdb.Len() == 0 {
db.logf("memdb@flush skipping")
// drop frozen memdb
db.dropFrozenMem()
return
}
// Pause table compaction.
resumeC := make(chan struct{})
select {
case db.tcompPauseC <- (chan<- struct{})(resumeC):
case <-db.compPerErrC:
close(resumeC)
resumeC = nil
case _, _ = <-db.closeC:
return
}
var (
rec = &sessionRecord{}
stats = &cStatStaging{}
flushLevel int
)
// Generate tables.
db.compactionTransactFunc("memdb@flush", func(cnt *compactionTransactCounter) (err error) {
stats.startTimer()
flushLevel, err = db.s.flushMemdb(rec, mdb.DB, db.memdbMaxLevel)
stats.stopTimer()
return
}, func() error {
for _, r := range rec.addedTables {
db.logf("memdb@flush revert @%d", r.num)
if err := db.s.stor.Remove(storage.FileDesc{Type: storage.TypeTable, Num: r.num}); err != nil {
return err
}
}
return nil
})
rec.setJournalNum(db.journalFd.Num)
rec.setSeqNum(db.frozenSeq)
// Commit.
stats.startTimer()
db.compactionCommit("memdb", rec)
stats.stopTimer()
db.logf("memdb@flush committed F·%d T·%v", len(rec.addedTables), stats.duration)
for _, r := range rec.addedTables {
stats.write += r.size
}
db.compStats.addStat(flushLevel, stats)
// Drop frozen memdb.
db.dropFrozenMem()
// Resume table compaction.
if resumeC != nil {
select {
case <-resumeC:
close(resumeC)
case _, _ = <-db.closeC:
return
}
}
// Trigger table compaction.
db.compTrigger(db.tcompCmdC)
}
type tableCompactionBuilder struct {
db *DB
s *session
c *compaction
rec *sessionRecord
stat0, stat1 *cStatStaging
snapHasLastUkey bool
snapLastUkey []byte
snapLastSeq uint64
snapIter int
snapKerrCnt int
snapDropCnt int
kerrCnt int
dropCnt int
minSeq uint64
strict bool
tableSize int
tw *tWriter
}
func (b *tableCompactionBuilder) appendKV(key, value []byte) error {
// Create new table if not already.
if b.tw == nil {
// Check for pause event.
if b.db != nil {
select {
case ch := <-b.db.tcompPauseC:
b.db.pauseCompaction(ch)
case _, _ = <-b.db.closeC:
b.db.compactionExitTransact()
default:
}
}
// Create new table.
var err error
b.tw, err = b.s.tops.create()
if err != nil {
return err
}
}
// Write key/value into table.
return b.tw.append(key, value)
}
func (b *tableCompactionBuilder) needFlush() bool {
return b.tw.tw.BytesLen() >= b.tableSize
}
func (b *tableCompactionBuilder) flush() error {
t, err := b.tw.finish()
if err != nil {
return err
}
b.rec.addTableFile(b.c.sourceLevel+1, t)
b.stat1.write += t.size
b.s.logf("table@build created L%d@%d N·%d S·%s %q:%q", b.c.sourceLevel+1, t.fd.Num, b.tw.tw.EntriesLen(), shortenb(int(t.size)), t.imin, t.imax)
b.tw = nil
return nil
}
func (b *tableCompactionBuilder) cleanup() {
if b.tw != nil {
b.tw.drop()
b.tw = nil
}
}
func (b *tableCompactionBuilder) run(cnt *compactionTransactCounter) error {
snapResumed := b.snapIter > 0
hasLastUkey := b.snapHasLastUkey // The key might has zero length, so this is necessary.
lastUkey := append([]byte{}, b.snapLastUkey...)
lastSeq := b.snapLastSeq
b.kerrCnt = b.snapKerrCnt
b.dropCnt = b.snapDropCnt
// Restore compaction state.
b.c.restore()
defer b.cleanup()
b.stat1.startTimer()
defer b.stat1.stopTimer()
iter := b.c.newIterator()
defer iter.Release()
for i := 0; iter.Next(); i++ {
// Incr transact counter.
cnt.incr()
// Skip until last state.
if i < b.snapIter {
continue
}
resumed := false
if snapResumed {
resumed = true
snapResumed = false
}
ikey := iter.Key()
ukey, seq, kt, kerr := parseInternalKey(ikey)
if kerr == nil {
shouldStop := !resumed && b.c.shouldStopBefore(ikey)
if !hasLastUkey || b.s.icmp.uCompare(lastUkey, ukey) != 0 {
// First occurrence of this user key.
// Only rotate tables if ukey doesn't hop across.
if b.tw != nil && (shouldStop || b.needFlush()) {
if err := b.flush(); err != nil {
return err
}
// Creates snapshot of the state.
b.c.save()
b.snapHasLastUkey = hasLastUkey
b.snapLastUkey = append(b.snapLastUkey[:0], lastUkey...)
b.snapLastSeq = lastSeq
b.snapIter = i
b.snapKerrCnt = b.kerrCnt
b.snapDropCnt = b.dropCnt
}
hasLastUkey = true
lastUkey = append(lastUkey[:0], ukey...)
lastSeq = keyMaxSeq
}
switch {
case lastSeq <= b.minSeq:
// Dropped because newer entry for same user key exist
fallthrough // (A)
case kt == keyTypeDel && seq <= b.minSeq && b.c.baseLevelForKey(lastUkey):
// For this user key:
// (1) there is no data in higher levels
// (2) data in lower levels will have larger seq numbers
// (3) data in layers that are being compacted here and have
// smaller seq numbers will be dropped in the next
// few iterations of this loop (by rule (A) above).
// Therefore this deletion marker is obsolete and can be dropped.
lastSeq = seq
b.dropCnt++
continue
default:
lastSeq = seq
}
} else {
if b.strict {
return kerr
}
// Don't drop corrupted keys.
hasLastUkey = false
lastUkey = lastUkey[:0]
lastSeq = keyMaxSeq
b.kerrCnt++
}
if err := b.appendKV(ikey, iter.Value()); err != nil {
return err
}
}
if err := iter.Error(); err != nil {
return err
}
// Finish last table.
if b.tw != nil && !b.tw.empty() {
return b.flush()
}
return nil
}
func (b *tableCompactionBuilder) revert() error {
for _, at := range b.rec.addedTables {
b.s.logf("table@build revert @%d", at.num)
if err := b.s.stor.Remove(storage.FileDesc{Type: storage.TypeTable, Num: at.num}); err != nil {
return err
}
}
return nil
}
func (db *DB) tableCompaction(c *compaction, noTrivial bool) {
defer c.release()
rec := &sessionRecord{}
rec.addCompPtr(c.sourceLevel, c.imax)
if !noTrivial && c.trivial() {
t := c.levels[0][0]
db.logf("table@move L%d@%d -> L%d", c.sourceLevel, t.fd.Num, c.sourceLevel+1)
rec.delTable(c.sourceLevel, t.fd.Num)
rec.addTableFile(c.sourceLevel+1, t)
db.compactionCommit("table-move", rec)
return
}
var stats [2]cStatStaging
for i, tables := range c.levels {
for _, t := range tables {
stats[i].read += t.size
// Insert deleted tables into record
rec.delTable(c.sourceLevel+i, t.fd.Num)
}
}
sourceSize := int(stats[0].read + stats[1].read)
minSeq := db.minSeq()
db.logf("table@compaction L%d·%d -> L%d·%d S·%s Q·%d", c.sourceLevel, len(c.levels[0]), c.sourceLevel+1, len(c.levels[1]), shortenb(sourceSize), minSeq)
b := &tableCompactionBuilder{
db: db,
s: db.s,
c: c,
rec: rec,
stat1: &stats[1],
minSeq: minSeq,
strict: db.s.o.GetStrict(opt.StrictCompaction),
tableSize: db.s.o.GetCompactionTableSize(c.sourceLevel + 1),
}
db.compactionTransact("table@build", b)
// Commit.
stats[1].startTimer()
db.compactionCommit("table", rec)
stats[1].stopTimer()
resultSize := int(stats[1].write)
db.logf("table@compaction committed F%s S%s Ke·%d D·%d T·%v", sint(len(rec.addedTables)-len(rec.deletedTables)), sshortenb(resultSize-sourceSize), b.kerrCnt, b.dropCnt, stats[1].duration)
// Save compaction stats
for i := range stats {
db.compStats.addStat(c.sourceLevel+1, &stats[i])
}
}
func (db *DB) tableRangeCompaction(level int, umin, umax []byte) error {
db.logf("table@compaction range L%d %q:%q", level, umin, umax)
if level >= 0 {
if c := db.s.getCompactionRange(level, umin, umax, true); c != nil {
db.tableCompaction(c, true)
}
} else {
// Retry until nothing to compact.
for {
compacted := false
// Scan for maximum level with overlapped tables.
v := db.s.version()
m := 1
for i := m; i < len(v.levels); i++ {
tables := v.levels[i]
if tables.overlaps(db.s.icmp, umin, umax, false) {
m = i
}
}
v.release()
for level := 0; level < m; level++ {
if c := db.s.getCompactionRange(level, umin, umax, false); c != nil {
db.tableCompaction(c, true)
compacted = true
}
}
if !compacted {
break
}
}
}
return nil
}
func (db *DB) tableAutoCompaction() {
if c := db.s.pickCompaction(); c != nil {
db.tableCompaction(c, false)
}
}
func (db *DB) tableNeedCompaction() bool {
v := db.s.version()
defer v.release()
return v.needCompaction()
}
func (db *DB) pauseCompaction(ch chan<- struct{}) {
select {
case ch <- struct{}{}:
case _, _ = <-db.closeC:
db.compactionExitTransact()
}
}
type cCmd interface {
ack(err error)
}
type cAuto struct {
ackC chan<- error
}
func (r cAuto) ack(err error) {
if r.ackC != nil {
defer func() {
recover()
}()
r.ackC <- err
}
}
type cRange struct {
level int
min, max []byte
ackC chan<- error
}
func (r cRange) ack(err error) {
if r.ackC != nil {
defer func() {
recover()
}()
r.ackC <- err
}
}
// This will trigger auto compaction but will not wait for it.
func (db *DB) compTrigger(compC chan<- cCmd) {
select {
case compC <- cAuto{}:
default:
}
}
// This will trigger auto compation and/or wait for all compaction to be done.
func (db *DB) compTriggerWait(compC chan<- cCmd) (err error) {
ch := make(chan error)
defer close(ch)
// Send cmd.
select {
case compC <- cAuto{ch}:
case err = <-db.compErrC:
return
case _, _ = <-db.closeC:
return ErrClosed
}
// Wait cmd.
select {
case err = <-ch:
case err = <-db.compErrC:
case _, _ = <-db.closeC:
return ErrClosed
}
return err
}
// Send range compaction request.
func (db *DB) compTriggerRange(compC chan<- cCmd, level int, min, max []byte) (err error) {
ch := make(chan error)
defer close(ch)
// Send cmd.
select {
case compC <- cRange{level, min, max, ch}:
case err := <-db.compErrC:
return err
case _, _ = <-db.closeC:
return ErrClosed
}
// Wait cmd.
select {
case err = <-ch:
case err = <-db.compErrC:
case _, _ = <-db.closeC:
return ErrClosed
}
return err
}
func (db *DB) mCompaction() {
var x cCmd
defer func() {
if x := recover(); x != nil {
if x != errCompactionTransactExiting {
panic(x)
}
}
if x != nil {
x.ack(ErrClosed)
}
db.closeW.Done()
}()
for {
select {
case x = <-db.mcompCmdC:
switch x.(type) {
case cAuto:
db.memCompaction()
x.ack(nil)
x = nil
default:
panic("leveldb: unknown command")
}
case _, _ = <-db.closeC:
return
}
}
}
func (db *DB) tCompaction() {
var x cCmd
var ackQ []cCmd
defer func() {
if x := recover(); x != nil {
if x != errCompactionTransactExiting {
panic(x)
}
}
for i := range ackQ {
ackQ[i].ack(ErrClosed)
ackQ[i] = nil
}
if x != nil {
x.ack(ErrClosed)
}
db.closeW.Done()
}()
for {
if db.tableNeedCompaction() {
select {
case x = <-db.tcompCmdC:
case ch := <-db.tcompPauseC:
db.pauseCompaction(ch)
continue
case _, _ = <-db.closeC:
return
default:
}
} else {
for i := range ackQ {
ackQ[i].ack(nil)
ackQ[i] = nil
}
ackQ = ackQ[:0]
select {
case x = <-db.tcompCmdC:
case ch := <-db.tcompPauseC:
db.pauseCompaction(ch)
continue
case _, _ = <-db.closeC:
return
}
}
if x != nil {
switch cmd := x.(type) {
case cAuto:
ackQ = append(ackQ, x)
case cRange:
x.ack(db.tableRangeCompaction(cmd.level, cmd.min, cmd.max))
default:
panic("leveldb: unknown command")
}
x = nil
}
db.tableAutoCompaction()
}
}