2016-09-13 22:20:22 +02:00

830 lines
16 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright (c) 2014 The mathutil Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package mathutil provides utilities supplementing the standard 'math' and
// 'math/rand' packages.
//
// Compatibility issues
//
// 2013-12-13: The following functions have been REMOVED
//
// func Uint64ToBigInt(n uint64) *big.Int
// func Uint64FromBigInt(n *big.Int) (uint64, bool)
//
// 2013-05-13: The following functions are now DEPRECATED
//
// func Uint64ToBigInt(n uint64) *big.Int
// func Uint64FromBigInt(n *big.Int) (uint64, bool)
//
// These functions will be REMOVED with Go release 1.1+1.
//
// 2013-01-21: The following functions have been REMOVED
//
// func MaxInt() int
// func MinInt() int
// func MaxUint() uint
// func UintPtrBits() int
//
// They are now replaced by untyped constants
//
// MaxInt
// MinInt
// MaxUint
// UintPtrBits
//
// Additionally one more untyped constant was added
//
// IntBits
//
// This change breaks any existing code depending on the above removed
// functions. They should have not been published in the first place, that was
// unfortunate. Instead, defining such architecture and/or implementation
// specific integer limits and bit widths as untyped constants improves
// performance and allows for static dead code elimination if it depends on
// these values. Thanks to minux for pointing it out in the mail list
// (https://groups.google.com/d/msg/golang-nuts/tlPpLW6aJw8/NT3mpToH-a4J).
//
// 2012-12-12: The following functions will be DEPRECATED with Go release
// 1.0.3+1 and REMOVED with Go release 1.0.3+2, b/c of
// http://code.google.com/p/go/source/detail?r=954a79ee3ea8
//
// func Uint64ToBigInt(n uint64) *big.Int
// func Uint64FromBigInt(n *big.Int) (uint64, bool)
package mathutil
import (
"math"
"math/big"
)
// Architecture and/or implementation specific integer limits and bit widths.
const (
MaxInt = 1<<(IntBits-1) - 1
MinInt = -MaxInt - 1
MaxUint = 1<<IntBits - 1
IntBits = 1 << (^uint(0)>>32&1 + ^uint(0)>>16&1 + ^uint(0)>>8&1 + 3)
UintPtrBits = 1 << (^uintptr(0)>>32&1 + ^uintptr(0)>>16&1 + ^uintptr(0)>>8&1 + 3)
)
var (
_1 = big.NewInt(1)
_2 = big.NewInt(2)
)
// GCDByte returns the greatest common divisor of a and b. Based on:
// http://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations
func GCDByte(a, b byte) byte {
for b != 0 {
a, b = b, a%b
}
return a
}
// GCDUint16 returns the greatest common divisor of a and b.
func GCDUint16(a, b uint16) uint16 {
for b != 0 {
a, b = b, a%b
}
return a
}
// GCD returns the greatest common divisor of a and b.
func GCDUint32(a, b uint32) uint32 {
for b != 0 {
a, b = b, a%b
}
return a
}
// GCD64 returns the greatest common divisor of a and b.
func GCDUint64(a, b uint64) uint64 {
for b != 0 {
a, b = b, a%b
}
return a
}
// ISqrt returns floor(sqrt(n)). Typical run time is few hundreds of ns.
func ISqrt(n uint32) (x uint32) {
if n == 0 {
return
}
if n >= math.MaxUint16*math.MaxUint16 {
return math.MaxUint16
}
var px, nx uint32
for x = n; ; px, x = x, nx {
nx = (x + n/x) / 2
if nx == x || nx == px {
break
}
}
return
}
// SqrtUint64 returns floor(sqrt(n)). Typical run time is about 0.5 µs.
func SqrtUint64(n uint64) (x uint64) {
if n == 0 {
return
}
if n >= math.MaxUint32*math.MaxUint32 {
return math.MaxUint32
}
var px, nx uint64
for x = n; ; px, x = x, nx {
nx = (x + n/x) / 2
if nx == x || nx == px {
break
}
}
return
}
// SqrtBig returns floor(sqrt(n)). It panics on n < 0.
func SqrtBig(n *big.Int) (x *big.Int) {
switch n.Sign() {
case -1:
panic(-1)
case 0:
return big.NewInt(0)
}
var px, nx big.Int
x = big.NewInt(0)
x.SetBit(x, n.BitLen()/2+1, 1)
for {
nx.Rsh(nx.Add(x, nx.Div(n, x)), 1)
if nx.Cmp(x) == 0 || nx.Cmp(&px) == 0 {
break
}
px.Set(x)
x.Set(&nx)
}
return
}
// Log2Byte returns log base 2 of n. It's the same as index of the highest
// bit set in n. For n == 0 -1 is returned.
func Log2Byte(n byte) int {
return log2[n]
}
// Log2Uint16 returns log base 2 of n. It's the same as index of the highest
// bit set in n. For n == 0 -1 is returned.
func Log2Uint16(n uint16) int {
if b := n >> 8; b != 0 {
return log2[b] + 8
}
return log2[n]
}
// Log2Uint32 returns log base 2 of n. It's the same as index of the highest
// bit set in n. For n == 0 -1 is returned.
func Log2Uint32(n uint32) int {
if b := n >> 24; b != 0 {
return log2[b] + 24
}
if b := n >> 16; b != 0 {
return log2[b] + 16
}
if b := n >> 8; b != 0 {
return log2[b] + 8
}
return log2[n]
}
// Log2Uint64 returns log base 2 of n. It's the same as index of the highest
// bit set in n. For n == 0 -1 is returned.
func Log2Uint64(n uint64) int {
if b := n >> 56; b != 0 {
return log2[b] + 56
}
if b := n >> 48; b != 0 {
return log2[b] + 48
}
if b := n >> 40; b != 0 {
return log2[b] + 40
}
if b := n >> 32; b != 0 {
return log2[b] + 32
}
if b := n >> 24; b != 0 {
return log2[b] + 24
}
if b := n >> 16; b != 0 {
return log2[b] + 16
}
if b := n >> 8; b != 0 {
return log2[b] + 8
}
return log2[n]
}
// ModPowByte computes (b^e)%m. It panics for m == 0 || b == e == 0.
//
// See also: http://en.wikipedia.org/wiki/Modular_exponentiation#Right-to-left_binary_method
func ModPowByte(b, e, m byte) byte {
if b == 0 && e == 0 {
panic(0)
}
if m == 1 {
return 0
}
r := uint16(1)
for b, m := uint16(b), uint16(m); e > 0; b, e = b*b%m, e>>1 {
if e&1 == 1 {
r = r * b % m
}
}
return byte(r)
}
// ModPowByte computes (b^e)%m. It panics for m == 0 || b == e == 0.
func ModPowUint16(b, e, m uint16) uint16 {
if b == 0 && e == 0 {
panic(0)
}
if m == 1 {
return 0
}
r := uint32(1)
for b, m := uint32(b), uint32(m); e > 0; b, e = b*b%m, e>>1 {
if e&1 == 1 {
r = r * b % m
}
}
return uint16(r)
}
// ModPowUint32 computes (b^e)%m. It panics for m == 0 || b == e == 0.
func ModPowUint32(b, e, m uint32) uint32 {
if b == 0 && e == 0 {
panic(0)
}
if m == 1 {
return 0
}
r := uint64(1)
for b, m := uint64(b), uint64(m); e > 0; b, e = b*b%m, e>>1 {
if e&1 == 1 {
r = r * b % m
}
}
return uint32(r)
}
// ModPowUint64 computes (b^e)%m. It panics for m == 0 || b == e == 0.
func ModPowUint64(b, e, m uint64) (r uint64) {
if b == 0 && e == 0 {
panic(0)
}
if m == 1 {
return 0
}
return modPowBigInt(big.NewInt(0).SetUint64(b), big.NewInt(0).SetUint64(e), big.NewInt(0).SetUint64(m)).Uint64()
}
func modPowBigInt(b, e, m *big.Int) (r *big.Int) {
r = big.NewInt(1)
for i, n := 0, e.BitLen(); i < n; i++ {
if e.Bit(i) != 0 {
r.Mod(r.Mul(r, b), m)
}
b.Mod(b.Mul(b, b), m)
}
return
}
// ModPowBigInt computes (b^e)%m. Returns nil for e < 0. It panics for m == 0 || b == e == 0.
func ModPowBigInt(b, e, m *big.Int) (r *big.Int) {
if b.Sign() == 0 && e.Sign() == 0 {
panic(0)
}
if m.Cmp(_1) == 0 {
return big.NewInt(0)
}
if e.Sign() < 0 {
return
}
return modPowBigInt(big.NewInt(0).Set(b), big.NewInt(0).Set(e), m)
}
var uint64ToBigIntDelta big.Int
func init() {
uint64ToBigIntDelta.SetBit(&uint64ToBigIntDelta, 63, 1)
}
var uintptrBits int
func init() {
x := uint64(math.MaxUint64)
uintptrBits = BitLenUintptr(uintptr(x))
}
// UintptrBits returns the bit width of an uintptr at the executing machine.
func UintptrBits() int {
return uintptrBits
}
// AddUint128_64 returns the uint128 sum of uint64 a and b.
func AddUint128_64(a, b uint64) (hi uint64, lo uint64) {
lo = a + b
if lo < a {
hi = 1
}
return
}
// MulUint128_64 returns the uint128 bit product of uint64 a and b.
func MulUint128_64(a, b uint64) (hi, lo uint64) {
/*
2^(2 W) ahi bhi + 2^W alo bhi + 2^W ahi blo + alo blo
FEDCBA98 76543210 FEDCBA98 76543210
---- alo*blo ----
---- alo*bhi ----
---- ahi*blo ----
---- ahi*bhi ----
*/
const w = 32
const m = 1<<w - 1
ahi, bhi, alo, blo := a>>w, b>>w, a&m, b&m
lo = alo * blo
mid1 := alo * bhi
mid2 := ahi * blo
c1, lo := AddUint128_64(lo, mid1<<w)
c2, lo := AddUint128_64(lo, mid2<<w)
_, hi = AddUint128_64(ahi*bhi, mid1>>w+mid2>>w+uint64(c1+c2))
return
}
// PowerizeBigInt returns (e, p) such that e is the smallest number for which p
// == b^e is greater or equal n. For n < 0 or b < 2 (0, nil) is returned.
//
// NOTE: Run time for large values of n (above about 2^1e6 ~= 1e300000) can be
// significant and/or unacceptabe. For any smaller values of n the function
// typically performs in sub second time. For "small" values of n (cca bellow
// 2^1e3 ~= 1e300) the same can be easily below 10 µs.
//
// A special (and trivial) case of b == 2 is handled separately and performs
// much faster.
func PowerizeBigInt(b, n *big.Int) (e uint32, p *big.Int) {
switch {
case b.Cmp(_2) < 0 || n.Sign() < 0:
return
case n.Sign() == 0 || n.Cmp(_1) == 0:
return 0, big.NewInt(1)
case b.Cmp(_2) == 0:
p = big.NewInt(0)
e = uint32(n.BitLen() - 1)
p.SetBit(p, int(e), 1)
if p.Cmp(n) < 0 {
p.Mul(p, _2)
e++
}
return
}
bw := b.BitLen()
nw := n.BitLen()
p = big.NewInt(1)
var bb, r big.Int
for {
switch p.Cmp(n) {
case -1:
x := uint32((nw - p.BitLen()) / bw)
if x == 0 {
x = 1
}
e += x
switch x {
case 1:
p.Mul(p, b)
default:
r.Set(_1)
bb.Set(b)
e := x
for {
if e&1 != 0 {
r.Mul(&r, &bb)
}
if e >>= 1; e == 0 {
break
}
bb.Mul(&bb, &bb)
}
p.Mul(p, &r)
}
case 0, 1:
return
}
}
}
// PowerizeUint32BigInt returns (e, p) such that e is the smallest number for
// which p == b^e is greater or equal n. For n < 0 or b < 2 (0, nil) is
// returned.
//
// More info: see PowerizeBigInt.
func PowerizeUint32BigInt(b uint32, n *big.Int) (e uint32, p *big.Int) {
switch {
case b < 2 || n.Sign() < 0:
return
case n.Sign() == 0 || n.Cmp(_1) == 0:
return 0, big.NewInt(1)
case b == 2:
p = big.NewInt(0)
e = uint32(n.BitLen() - 1)
p.SetBit(p, int(e), 1)
if p.Cmp(n) < 0 {
p.Mul(p, _2)
e++
}
return
}
var bb big.Int
bb.SetInt64(int64(b))
return PowerizeBigInt(&bb, n)
}
/*
ProbablyPrimeUint32 returns true if n is prime or n is a pseudoprime to base a.
It implements the Miller-Rabin primality test for one specific value of 'a' and
k == 1.
Wrt pseudocode shown at
http://en.wikipedia.org/wiki/Miller-Rabin_primality_test#Algorithm_and_running_time
Input: n > 3, an odd integer to be tested for primality;
Input: k, a parameter that determines the accuracy of the test
Output: composite if n is composite, otherwise probably prime
write n 1 as 2^s·d with d odd by factoring powers of 2 from n 1
LOOP: repeat k times:
pick a random integer a in the range [2, n 2]
x ← a^d mod n
if x = 1 or x = n 1 then do next LOOP
for r = 1 .. s 1
x ← x^2 mod n
if x = 1 then return composite
if x = n 1 then do next LOOP
return composite
return probably prime
... this function behaves like passing 1 for 'k' and additionally a
fixed/non-random 'a'. Otherwise it's the same algorithm.
See also: http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html
*/
func ProbablyPrimeUint32(n, a uint32) bool {
d, s := n-1, 0
for ; d&1 == 0; d, s = d>>1, s+1 {
}
x := uint64(ModPowUint32(a, d, n))
if x == 1 || uint32(x) == n-1 {
return true
}
for ; s > 1; s-- {
if x = x * x % uint64(n); x == 1 {
return false
}
if uint32(x) == n-1 {
return true
}
}
return false
}
// ProbablyPrimeUint64_32 returns true if n is prime or n is a pseudoprime to
// base a. It implements the Miller-Rabin primality test for one specific value
// of 'a' and k == 1. See also ProbablyPrimeUint32.
func ProbablyPrimeUint64_32(n uint64, a uint32) bool {
d, s := n-1, 0
for ; d&1 == 0; d, s = d>>1, s+1 {
}
x := ModPowUint64(uint64(a), d, n)
if x == 1 || x == n-1 {
return true
}
bx, bn := big.NewInt(0).SetUint64(x), big.NewInt(0).SetUint64(n)
for ; s > 1; s-- {
if x = bx.Mod(bx.Mul(bx, bx), bn).Uint64(); x == 1 {
return false
}
if x == n-1 {
return true
}
}
return false
}
// ProbablyPrimeBigInt_32 returns true if n is prime or n is a pseudoprime to
// base a. It implements the Miller-Rabin primality test for one specific value
// of 'a' and k == 1. See also ProbablyPrimeUint32.
func ProbablyPrimeBigInt_32(n *big.Int, a uint32) bool {
var d big.Int
d.Set(n)
d.Sub(&d, _1) // d <- n-1
s := 0
for ; d.Bit(s) == 0; s++ {
}
nMinus1 := big.NewInt(0).Set(&d)
d.Rsh(&d, uint(s))
x := ModPowBigInt(big.NewInt(int64(a)), &d, n)
if x.Cmp(_1) == 0 || x.Cmp(nMinus1) == 0 {
return true
}
for ; s > 1; s-- {
if x = x.Mod(x.Mul(x, x), n); x.Cmp(_1) == 0 {
return false
}
if x.Cmp(nMinus1) == 0 {
return true
}
}
return false
}
// ProbablyPrimeBigInt returns true if n is prime or n is a pseudoprime to base
// a. It implements the Miller-Rabin primality test for one specific value of
// 'a' and k == 1. See also ProbablyPrimeUint32.
func ProbablyPrimeBigInt(n, a *big.Int) bool {
var d big.Int
d.Set(n)
d.Sub(&d, _1) // d <- n-1
s := 0
for ; d.Bit(s) == 0; s++ {
}
nMinus1 := big.NewInt(0).Set(&d)
d.Rsh(&d, uint(s))
x := ModPowBigInt(a, &d, n)
if x.Cmp(_1) == 0 || x.Cmp(nMinus1) == 0 {
return true
}
for ; s > 1; s-- {
if x = x.Mod(x.Mul(x, x), n); x.Cmp(_1) == 0 {
return false
}
if x.Cmp(nMinus1) == 0 {
return true
}
}
return false
}
// Max returns the larger of a and b.
func Max(a, b int) int {
if a > b {
return a
}
return b
}
// Min returns the smaller of a and b.
func Min(a, b int) int {
if a < b {
return a
}
return b
}
// UMax returns the larger of a and b.
func UMax(a, b uint) uint {
if a > b {
return a
}
return b
}
// UMin returns the smaller of a and b.
func UMin(a, b uint) uint {
if a < b {
return a
}
return b
}
// MaxByte returns the larger of a and b.
func MaxByte(a, b byte) byte {
if a > b {
return a
}
return b
}
// MinByte returns the smaller of a and b.
func MinByte(a, b byte) byte {
if a < b {
return a
}
return b
}
// MaxInt8 returns the larger of a and b.
func MaxInt8(a, b int8) int8 {
if a > b {
return a
}
return b
}
// MinInt8 returns the smaller of a and b.
func MinInt8(a, b int8) int8 {
if a < b {
return a
}
return b
}
// MaxUint16 returns the larger of a and b.
func MaxUint16(a, b uint16) uint16 {
if a > b {
return a
}
return b
}
// MinUint16 returns the smaller of a and b.
func MinUint16(a, b uint16) uint16 {
if a < b {
return a
}
return b
}
// MaxInt16 returns the larger of a and b.
func MaxInt16(a, b int16) int16 {
if a > b {
return a
}
return b
}
// MinInt16 returns the smaller of a and b.
func MinInt16(a, b int16) int16 {
if a < b {
return a
}
return b
}
// MaxUint32 returns the larger of a and b.
func MaxUint32(a, b uint32) uint32 {
if a > b {
return a
}
return b
}
// MinUint32 returns the smaller of a and b.
func MinUint32(a, b uint32) uint32 {
if a < b {
return a
}
return b
}
// MaxInt32 returns the larger of a and b.
func MaxInt32(a, b int32) int32 {
if a > b {
return a
}
return b
}
// MinInt32 returns the smaller of a and b.
func MinInt32(a, b int32) int32 {
if a < b {
return a
}
return b
}
// MaxUint64 returns the larger of a and b.
func MaxUint64(a, b uint64) uint64 {
if a > b {
return a
}
return b
}
// MinUint64 returns the smaller of a and b.
func MinUint64(a, b uint64) uint64 {
if a < b {
return a
}
return b
}
// MaxInt64 returns the larger of a and b.
func MaxInt64(a, b int64) int64 {
if a > b {
return a
}
return b
}
// MinInt64 returns the smaller of a and b.
func MinInt64(a, b int64) int64 {
if a < b {
return a
}
return b
}
// ToBase produces n in base b. For example
//
// ToBase(2047, 22) -> [1, 5, 4]
//
// 1 * 22^0 1
// 5 * 22^1 110
// 4 * 22^2 1936
// ----
// 2047
//
// ToBase panics for bases < 2.
func ToBase(n *big.Int, b int) []int {
var nn big.Int
nn.Set(n)
if b < 2 {
panic("invalid base")
}
k := 1
switch nn.Sign() {
case -1:
nn.Neg(&nn)
k = -1
case 0:
return []int{0}
}
bb := big.NewInt(int64(b))
var r []int
rem := big.NewInt(0)
for nn.Sign() != 0 {
nn.QuoRem(&nn, bb, rem)
r = append(r, k*int(rem.Int64()))
}
return r
}