mirror of
https://github.com/octoleo/syncthing.git
synced 2025-01-22 14:48:30 +00:00
c6334e61aa
This adds the ability to have multiple concurrent connections to a single device. This is primarily useful when the network has multiple physical links for aggregated bandwidth. A single connection will never see a higher rate than a single link can give, but multiple connections are load-balanced over multiple links. It is also incidentally useful for older multi-core CPUs, where bandwidth could be limited by the TLS performance of a single CPU core -- using multiple connections achieves concurrency in the required crypto calculations... Co-authored-by: Simon Frei <freisim93@gmail.com> Co-authored-by: tomasz1986 <twilczynski@naver.com> Co-authored-by: bt90 <btom1990@googlemail.com>
689 lines
20 KiB
Go
689 lines
20 KiB
Go
// Copyright (C) 2019 The Syncthing Authors.
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public
|
|
// License, v. 2.0. If a copy of the MPL was not distributed with this file,
|
|
// You can obtain one at https://mozilla.org/MPL/2.0/.
|
|
|
|
package protocol
|
|
|
|
import (
|
|
"context"
|
|
"encoding/base32"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"strings"
|
|
"sync"
|
|
|
|
"github.com/gogo/protobuf/proto"
|
|
lru "github.com/hashicorp/golang-lru/v2"
|
|
"github.com/miscreant/miscreant.go"
|
|
"github.com/syncthing/syncthing/lib/rand"
|
|
"github.com/syncthing/syncthing/lib/sha256"
|
|
"golang.org/x/crypto/chacha20poly1305"
|
|
"golang.org/x/crypto/hkdf"
|
|
"golang.org/x/crypto/scrypt"
|
|
)
|
|
|
|
const (
|
|
nonceSize = 24 // chacha20poly1305.NonceSizeX
|
|
tagSize = 16 // chacha20poly1305.Overhead()
|
|
keySize = 32 // fits both chacha20poly1305 and AES-SIV
|
|
minPaddedSize = 1024 // smallest block we'll allow
|
|
blockOverhead = tagSize + nonceSize
|
|
maxPathComponent = 200 // characters
|
|
encryptedDirExtension = ".syncthing-enc" // for top level dirs
|
|
miscreantAlgo = "AES-SIV"
|
|
folderKeyCacheEntries = 1000
|
|
fileKeyCacheEntries = 5000
|
|
)
|
|
|
|
// The encryptedModel sits between the encrypted device and the model. It
|
|
// receives encrypted metadata and requests from the untrusted device, so it
|
|
// must decrypt those and answer requests by encrypting the data.
|
|
type encryptedModel struct {
|
|
model rawModel
|
|
folderKeys *folderKeyRegistry
|
|
keyGen *KeyGenerator
|
|
}
|
|
|
|
func newEncryptedModel(model rawModel, folderKeys *folderKeyRegistry, keyGen *KeyGenerator) encryptedModel {
|
|
return encryptedModel{
|
|
model: model,
|
|
folderKeys: folderKeys,
|
|
keyGen: keyGen,
|
|
}
|
|
}
|
|
|
|
func (e encryptedModel) Index(folder string, files []FileInfo) error {
|
|
if folderKey, ok := e.folderKeys.get(folder); ok {
|
|
// incoming index data to be decrypted
|
|
if err := decryptFileInfos(e.keyGen, files, folderKey); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return e.model.Index(folder, files)
|
|
}
|
|
|
|
func (e encryptedModel) IndexUpdate(folder string, files []FileInfo) error {
|
|
if folderKey, ok := e.folderKeys.get(folder); ok {
|
|
// incoming index data to be decrypted
|
|
if err := decryptFileInfos(e.keyGen, files, folderKey); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return e.model.IndexUpdate(folder, files)
|
|
}
|
|
|
|
func (e encryptedModel) Request(folder, name string, blockNo, size int32, offset int64, hash []byte, weakHash uint32, fromTemporary bool) (RequestResponse, error) {
|
|
folderKey, ok := e.folderKeys.get(folder)
|
|
if !ok {
|
|
return e.model.Request(folder, name, blockNo, size, offset, hash, weakHash, fromTemporary)
|
|
}
|
|
|
|
// Figure out the real file name, offset and size from the encrypted /
|
|
// tweaked values.
|
|
|
|
realName, err := decryptName(name, folderKey)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("decrypting name: %w", err)
|
|
}
|
|
realSize := size - blockOverhead
|
|
realOffset := offset - int64(blockNo*blockOverhead)
|
|
|
|
if size < minPaddedSize {
|
|
return nil, errors.New("short request")
|
|
}
|
|
|
|
// Attempt to decrypt the block hash; it may be nil depending on what
|
|
// type of device the request comes from. Trusted devices with
|
|
// encryption enabled know the hash but don't bother to encrypt & send
|
|
// it to us. Untrusted devices have the hash from the encrypted index
|
|
// data and do send it. The model knows to only verify the hash if it
|
|
// actually gets one.
|
|
|
|
var realHash []byte
|
|
fileKey := e.keyGen.FileKey(realName, folderKey)
|
|
if len(hash) > 0 {
|
|
var additional [8]byte
|
|
binary.BigEndian.PutUint64(additional[:], uint64(realOffset))
|
|
realHash, err = decryptDeterministic(hash, fileKey, additional[:])
|
|
if err != nil {
|
|
// "Legacy", no offset additional data?
|
|
realHash, err = decryptDeterministic(hash, fileKey, nil)
|
|
}
|
|
if err != nil {
|
|
return nil, fmt.Errorf("decrypting block hash: %w", err)
|
|
}
|
|
}
|
|
|
|
// Perform that request and grab the data.
|
|
|
|
resp, err := e.model.Request(folder, realName, blockNo, realSize, realOffset, realHash, 0, false)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Encrypt the response. Blocks smaller than minPaddedSize are padded
|
|
// with random data.
|
|
|
|
data := resp.Data()
|
|
if len(data) < minPaddedSize {
|
|
nd := make([]byte, minPaddedSize)
|
|
copy(nd, data)
|
|
if _, err := rand.Read(nd[len(data):]); err != nil {
|
|
panic("catastrophic randomness failure")
|
|
}
|
|
data = nd
|
|
}
|
|
enc := encryptBytes(data, fileKey)
|
|
resp.Close()
|
|
return rawResponse{enc}, nil
|
|
}
|
|
|
|
func (e encryptedModel) DownloadProgress(folder string, updates []FileDownloadProgressUpdate) error {
|
|
if _, ok := e.folderKeys.get(folder); !ok {
|
|
return e.model.DownloadProgress(folder, updates)
|
|
}
|
|
|
|
// Encrypted devices shouldn't send these - ignore them.
|
|
return nil
|
|
}
|
|
|
|
func (e encryptedModel) ClusterConfig(config ClusterConfig) error {
|
|
return e.model.ClusterConfig(config)
|
|
}
|
|
|
|
func (e encryptedModel) Closed(err error) {
|
|
e.model.Closed(err)
|
|
}
|
|
|
|
// The encryptedConnection sits between the model and the encrypted device. It
|
|
// encrypts outgoing metadata and decrypts incoming responses.
|
|
type encryptedConnection struct {
|
|
ConnectionInfo
|
|
conn *rawConnection
|
|
folderKeys *folderKeyRegistry
|
|
keyGen *KeyGenerator
|
|
}
|
|
|
|
func newEncryptedConnection(ci ConnectionInfo, conn *rawConnection, folderKeys *folderKeyRegistry, keyGen *KeyGenerator) encryptedConnection {
|
|
return encryptedConnection{
|
|
ConnectionInfo: ci,
|
|
conn: conn,
|
|
folderKeys: folderKeys,
|
|
keyGen: keyGen,
|
|
}
|
|
}
|
|
|
|
func (e encryptedConnection) Start() {
|
|
e.conn.Start()
|
|
}
|
|
|
|
func (e encryptedConnection) SetFolderPasswords(passwords map[string]string) {
|
|
e.folderKeys.setPasswords(passwords)
|
|
}
|
|
|
|
func (e encryptedConnection) DeviceID() DeviceID {
|
|
return e.conn.DeviceID()
|
|
}
|
|
|
|
func (e encryptedConnection) Index(ctx context.Context, folder string, files []FileInfo) error {
|
|
if folderKey, ok := e.folderKeys.get(folder); ok {
|
|
encryptFileInfos(e.keyGen, files, folderKey)
|
|
}
|
|
return e.conn.Index(ctx, folder, files)
|
|
}
|
|
|
|
func (e encryptedConnection) IndexUpdate(ctx context.Context, folder string, files []FileInfo) error {
|
|
if folderKey, ok := e.folderKeys.get(folder); ok {
|
|
encryptFileInfos(e.keyGen, files, folderKey)
|
|
}
|
|
return e.conn.IndexUpdate(ctx, folder, files)
|
|
}
|
|
|
|
func (e encryptedConnection) Request(ctx context.Context, folder string, name string, blockNo int, offset int64, size int, hash []byte, weakHash uint32, fromTemporary bool) ([]byte, error) {
|
|
folderKey, ok := e.folderKeys.get(folder)
|
|
if !ok {
|
|
return e.conn.Request(ctx, folder, name, blockNo, offset, size, hash, weakHash, fromTemporary)
|
|
}
|
|
|
|
// Encrypt / adjust the request parameters.
|
|
|
|
origSize := size
|
|
if size < minPaddedSize {
|
|
// Make a request for minPaddedSize data instead of the smaller
|
|
// block. We'll chop of the extra data later.
|
|
size = minPaddedSize
|
|
}
|
|
encName := encryptName(name, folderKey)
|
|
encOffset := offset + int64(blockNo*blockOverhead)
|
|
encSize := size + blockOverhead
|
|
|
|
// Perform that request, getting back and encrypted block.
|
|
|
|
bs, err := e.conn.Request(ctx, folder, encName, blockNo, encOffset, encSize, nil, 0, false)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Return the decrypted block (or an error if it fails decryption)
|
|
|
|
fileKey := e.keyGen.FileKey(name, folderKey)
|
|
bs, err = DecryptBytes(bs, fileKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return bs[:origSize], nil
|
|
}
|
|
|
|
func (e encryptedConnection) DownloadProgress(ctx context.Context, folder string, updates []FileDownloadProgressUpdate) {
|
|
if _, ok := e.folderKeys.get(folder); !ok {
|
|
e.conn.DownloadProgress(ctx, folder, updates)
|
|
}
|
|
|
|
// No need to send these
|
|
}
|
|
|
|
func (e encryptedConnection) ClusterConfig(config ClusterConfig) {
|
|
e.conn.ClusterConfig(config)
|
|
}
|
|
|
|
func (e encryptedConnection) Close(err error) {
|
|
e.conn.Close(err)
|
|
}
|
|
|
|
func (e encryptedConnection) Closed() <-chan struct{} {
|
|
return e.conn.Closed()
|
|
}
|
|
|
|
func (e encryptedConnection) Statistics() Statistics {
|
|
return e.conn.Statistics()
|
|
}
|
|
|
|
func encryptFileInfos(keyGen *KeyGenerator, files []FileInfo, folderKey *[keySize]byte) {
|
|
for i, fi := range files {
|
|
files[i] = encryptFileInfo(keyGen, fi, folderKey)
|
|
}
|
|
}
|
|
|
|
// encryptFileInfo encrypts a FileInfo and wraps it into a new fake FileInfo
|
|
// with an encrypted name.
|
|
func encryptFileInfo(keyGen *KeyGenerator, fi FileInfo, folderKey *[keySize]byte) FileInfo {
|
|
fileKey := keyGen.FileKey(fi.Name, folderKey)
|
|
|
|
// The entire FileInfo is encrypted with a random nonce, and concatenated
|
|
// with that nonce.
|
|
|
|
bs, err := proto.Marshal(&fi)
|
|
if err != nil {
|
|
panic("impossible serialization mishap: " + err.Error())
|
|
}
|
|
encryptedFI := encryptBytes(bs, fileKey)
|
|
|
|
// The vector is set to something that is higher than any other version sent
|
|
// previously. We do this because
|
|
// there is no way for the insecure device on the other end to do proper
|
|
// conflict resolution, so they will simply accept and keep whatever is the
|
|
// latest version they see. The secure devices will decrypt the real
|
|
// FileInfo, see the real Version, and act appropriately regardless of what
|
|
// this fake version happens to be.
|
|
// The vector also needs to be deterministic/the same among all trusted
|
|
// devices with the same vector, such that the pulling/remote completion
|
|
// works correctly on the untrusted device(s).
|
|
|
|
version := Vector{
|
|
Counters: []Counter{
|
|
{
|
|
ID: 1,
|
|
},
|
|
},
|
|
}
|
|
for _, counter := range fi.Version.Counters {
|
|
version.Counters[0].Value += counter.Value
|
|
}
|
|
|
|
// Construct the fake block list. Each block will be blockOverhead bytes
|
|
// larger than the corresponding real one and have an encrypted hash.
|
|
// Very small blocks will be padded upwards to minPaddedSize.
|
|
//
|
|
// The encrypted hash becomes just a "token" for the data -- it doesn't
|
|
// help verifying it, but it lets the encrypted device do block level
|
|
// diffs and data reuse properly when it gets a new version of a file.
|
|
|
|
var offset int64
|
|
blocks := make([]BlockInfo, len(fi.Blocks))
|
|
for i, b := range fi.Blocks {
|
|
if b.Size < minPaddedSize {
|
|
b.Size = minPaddedSize
|
|
}
|
|
size := b.Size + blockOverhead
|
|
|
|
// The offset goes into the encrypted block hash as additional data,
|
|
// essentially mixing in with the nonce. This means a block hash
|
|
// remains stable for the same data at the same offset, but doesn't
|
|
// reveal the existence of identical data blocks at other offsets.
|
|
var additional [8]byte
|
|
binary.BigEndian.PutUint64(additional[:], uint64(b.Offset))
|
|
hash := encryptDeterministic(b.Hash, fileKey, additional[:])
|
|
|
|
blocks[i] = BlockInfo{
|
|
Hash: hash,
|
|
Offset: offset,
|
|
Size: size,
|
|
}
|
|
offset += int64(size)
|
|
}
|
|
|
|
// Construct the fake FileInfo. This is mostly just a wrapper around the
|
|
// encrypted FileInfo and fake block list. We'll represent symlinks as
|
|
// directories, because they need some sort of on disk representation
|
|
// but have no data outside of the metadata. Deletion and sequence
|
|
// numbering are handled as usual.
|
|
|
|
typ := FileInfoTypeFile
|
|
if fi.Type != FileInfoTypeFile {
|
|
typ = FileInfoTypeDirectory
|
|
}
|
|
enc := FileInfo{
|
|
Name: encryptName(fi.Name, folderKey),
|
|
Type: typ,
|
|
Permissions: 0o644,
|
|
ModifiedS: 1234567890, // Sat Feb 14 00:31:30 CET 2009
|
|
Deleted: fi.Deleted,
|
|
RawInvalid: fi.IsInvalid(),
|
|
Version: version,
|
|
Sequence: fi.Sequence,
|
|
Encrypted: encryptedFI,
|
|
}
|
|
if typ == FileInfoTypeFile {
|
|
enc.Size = offset // new total file size
|
|
enc.Blocks = blocks
|
|
enc.RawBlockSize = fi.BlockSize() + blockOverhead
|
|
}
|
|
|
|
return enc
|
|
}
|
|
|
|
func decryptFileInfos(keyGen *KeyGenerator, files []FileInfo, folderKey *[keySize]byte) error {
|
|
for i, fi := range files {
|
|
decFI, err := DecryptFileInfo(keyGen, fi, folderKey)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
files[i] = decFI
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// DecryptFileInfo extracts the encrypted portion of a FileInfo, decrypts it
|
|
// and returns that.
|
|
func DecryptFileInfo(keyGen *KeyGenerator, fi FileInfo, folderKey *[keySize]byte) (FileInfo, error) {
|
|
realName, err := decryptName(fi.Name, folderKey)
|
|
if err != nil {
|
|
return FileInfo{}, err
|
|
}
|
|
|
|
fileKey := keyGen.FileKey(realName, folderKey)
|
|
dec, err := DecryptBytes(fi.Encrypted, fileKey)
|
|
if err != nil {
|
|
return FileInfo{}, err
|
|
}
|
|
|
|
var decFI FileInfo
|
|
if err := proto.Unmarshal(dec, &decFI); err != nil {
|
|
return FileInfo{}, err
|
|
}
|
|
|
|
// Preserve sequence, which is legitimately controlled by the untrusted device
|
|
decFI.Sequence = fi.Sequence
|
|
|
|
return decFI, nil
|
|
}
|
|
|
|
var base32Hex = base32.HexEncoding.WithPadding(base32.NoPadding)
|
|
|
|
// encryptName encrypts the given string in a deterministic manner (the
|
|
// result is always the same for any given string) and encodes it in a
|
|
// filesystem-friendly manner.
|
|
func encryptName(name string, key *[keySize]byte) string {
|
|
enc := encryptDeterministic([]byte(name), key, nil)
|
|
return slashify(base32Hex.EncodeToString(enc))
|
|
}
|
|
|
|
// decryptName decrypts a string from encryptName
|
|
func decryptName(name string, key *[keySize]byte) (string, error) {
|
|
name, err := deslashify(name)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
bs, err := base32Hex.DecodeString(name)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
dec, err := decryptDeterministic(bs, key, nil)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
|
|
return string(dec), nil
|
|
}
|
|
|
|
// encryptBytes encrypts bytes with a random nonce
|
|
func encryptBytes(data []byte, key *[keySize]byte) []byte {
|
|
nonce := randomNonce()
|
|
return encrypt(data, nonce, key)
|
|
}
|
|
|
|
// encryptDeterministic encrypts bytes using AES-SIV
|
|
func encryptDeterministic(data []byte, key *[keySize]byte, additionalData []byte) []byte {
|
|
aead, err := miscreant.NewAEAD(miscreantAlgo, key[:], 0)
|
|
if err != nil {
|
|
panic("cipher failure: " + err.Error())
|
|
}
|
|
return aead.Seal(nil, nil, data, additionalData)
|
|
}
|
|
|
|
// decryptDeterministic decrypts bytes using AES-SIV
|
|
func decryptDeterministic(data []byte, key *[keySize]byte, additionalData []byte) ([]byte, error) {
|
|
aead, err := miscreant.NewAEAD(miscreantAlgo, key[:], 0)
|
|
if err != nil {
|
|
panic("cipher failure: " + err.Error())
|
|
}
|
|
return aead.Open(nil, nil, data, additionalData)
|
|
}
|
|
|
|
func encrypt(data []byte, nonce *[nonceSize]byte, key *[keySize]byte) []byte {
|
|
aead, err := chacha20poly1305.NewX(key[:])
|
|
if err != nil {
|
|
// Can only fail if the key is the wrong length
|
|
panic("cipher failure: " + err.Error())
|
|
}
|
|
|
|
if aead.NonceSize() != nonceSize || aead.Overhead() != tagSize {
|
|
// We want these values to be constant for our type declarations so
|
|
// we don't use the values returned by the GCM, but we verify them
|
|
// here.
|
|
panic("crypto parameter mismatch")
|
|
}
|
|
|
|
// Data is appended to the nonce
|
|
return aead.Seal(nonce[:], nonce[:], data, nil)
|
|
}
|
|
|
|
// DecryptBytes returns the decrypted bytes, or an error if decryption
|
|
// failed.
|
|
func DecryptBytes(data []byte, key *[keySize]byte) ([]byte, error) {
|
|
if len(data) < blockOverhead {
|
|
return nil, errors.New("data too short")
|
|
}
|
|
|
|
aead, err := chacha20poly1305.NewX(key[:])
|
|
if err != nil {
|
|
// Can only fail if the key is the wrong length
|
|
panic("cipher failure: " + err.Error())
|
|
}
|
|
|
|
if aead.NonceSize() != nonceSize || aead.Overhead() != tagSize {
|
|
// We want these values to be constant for our type declarations so
|
|
// we don't use the values returned by the GCM, but we verify them
|
|
// here.
|
|
panic("crypto parameter mismatch")
|
|
}
|
|
|
|
return aead.Open(nil, data[:nonceSize], data[nonceSize:], nil)
|
|
}
|
|
|
|
// randomNonce is a normal, cryptographically random nonce
|
|
func randomNonce() *[nonceSize]byte {
|
|
var nonce [nonceSize]byte
|
|
if _, err := rand.Read(nonce[:]); err != nil {
|
|
panic("catastrophic randomness failure: " + err.Error())
|
|
}
|
|
return &nonce
|
|
}
|
|
|
|
// keysFromPasswords converts a set of folder ID to password into a set of
|
|
// folder ID to encryption key, using our key derivation function.
|
|
func keysFromPasswords(keyGen *KeyGenerator, passwords map[string]string) map[string]*[keySize]byte {
|
|
res := make(map[string]*[keySize]byte, len(passwords))
|
|
for folder, password := range passwords {
|
|
res[folder] = keyGen.KeyFromPassword(folder, password)
|
|
}
|
|
return res
|
|
}
|
|
|
|
func knownBytes(folderID string) []byte {
|
|
return []byte("syncthing" + folderID)
|
|
}
|
|
|
|
type KeyGenerator struct {
|
|
mut sync.Mutex
|
|
folderKeys *lru.TwoQueueCache[folderKeyCacheKey, *[keySize]byte]
|
|
fileKeys *lru.TwoQueueCache[fileKeyCacheKey, *[keySize]byte]
|
|
}
|
|
|
|
func NewKeyGenerator() *KeyGenerator {
|
|
folderKeys, _ := lru.New2Q[folderKeyCacheKey, *[keySize]byte](folderKeyCacheEntries)
|
|
fileKeys, _ := lru.New2Q[fileKeyCacheKey, *[keySize]byte](fileKeyCacheEntries)
|
|
return &KeyGenerator{
|
|
folderKeys: folderKeys,
|
|
fileKeys: fileKeys,
|
|
}
|
|
}
|
|
|
|
type folderKeyCacheKey struct {
|
|
folderID string
|
|
password string
|
|
}
|
|
|
|
// KeyFromPassword uses key derivation to generate a stronger key from a
|
|
// probably weak password.
|
|
func (g *KeyGenerator) KeyFromPassword(folderID, password string) *[keySize]byte {
|
|
cacheKey := folderKeyCacheKey{folderID, password}
|
|
g.mut.Lock()
|
|
defer g.mut.Unlock()
|
|
if key, ok := g.folderKeys.Get(cacheKey); ok {
|
|
return key
|
|
}
|
|
bs, err := scrypt.Key([]byte(password), knownBytes(folderID), 32768, 8, 1, keySize)
|
|
if err != nil {
|
|
panic("key derivation failure: " + err.Error())
|
|
}
|
|
if len(bs) != keySize {
|
|
panic("key derivation failure: wrong number of bytes")
|
|
}
|
|
var key [keySize]byte
|
|
copy(key[:], bs)
|
|
g.folderKeys.Add(cacheKey, &key)
|
|
return &key
|
|
}
|
|
|
|
var hkdfSalt = []byte("syncthing")
|
|
|
|
type fileKeyCacheKey struct {
|
|
file string
|
|
key [keySize]byte
|
|
}
|
|
|
|
func (g *KeyGenerator) FileKey(filename string, folderKey *[keySize]byte) *[keySize]byte {
|
|
g.mut.Lock()
|
|
defer g.mut.Unlock()
|
|
cacheKey := fileKeyCacheKey{filename, *folderKey}
|
|
if key, ok := g.fileKeys.Get(cacheKey); ok {
|
|
return key
|
|
}
|
|
kdf := hkdf.New(sha256.New, append(folderKey[:], filename...), hkdfSalt, nil)
|
|
var fileKey [keySize]byte
|
|
n, err := io.ReadFull(kdf, fileKey[:])
|
|
if err != nil || n != keySize {
|
|
panic("hkdf failure")
|
|
}
|
|
g.fileKeys.Add(cacheKey, &fileKey)
|
|
return &fileKey
|
|
}
|
|
|
|
func PasswordToken(keyGen *KeyGenerator, folderID, password string) []byte {
|
|
return encryptDeterministic(knownBytes(folderID), keyGen.KeyFromPassword(folderID, password), nil)
|
|
}
|
|
|
|
// slashify inserts slashes (and file extension) in the string to create an
|
|
// appropriate tree. ABCDEFGH... => A.syncthing-enc/BC/DEFGH... We can use
|
|
// forward slashes here because we're on the outside of native path formats,
|
|
// the slash is the wire format.
|
|
func slashify(s string) string {
|
|
// We somewhat sloppily assume bytes == characters here, but the only
|
|
// file names we should deal with are those that come from our base32
|
|
// encoding.
|
|
|
|
comps := make([]string, 0, len(s)/maxPathComponent+3)
|
|
comps = append(comps, s[:1]+encryptedDirExtension)
|
|
s = s[1:]
|
|
comps = append(comps, s[:2])
|
|
s = s[2:]
|
|
|
|
for len(s) > maxPathComponent {
|
|
comps = append(comps, s[:maxPathComponent])
|
|
s = s[maxPathComponent:]
|
|
}
|
|
if len(s) > 0 {
|
|
comps = append(comps, s)
|
|
}
|
|
return strings.Join(comps, "/")
|
|
}
|
|
|
|
// deslashify removes slashes and encrypted file extensions from the string.
|
|
// This is the inverse of slashify().
|
|
func deslashify(s string) (string, error) {
|
|
if s == "" || !strings.HasPrefix(s[1:], encryptedDirExtension) {
|
|
return "", fmt.Errorf("invalid encrypted path: %q", s)
|
|
}
|
|
s = s[:1] + s[1+len(encryptedDirExtension):]
|
|
return strings.ReplaceAll(s, "/", ""), nil
|
|
}
|
|
|
|
type rawResponse struct {
|
|
data []byte
|
|
}
|
|
|
|
func (r rawResponse) Data() []byte {
|
|
return r.data
|
|
}
|
|
|
|
func (rawResponse) Close() {}
|
|
func (rawResponse) Wait() {}
|
|
|
|
// IsEncryptedParent returns true if the path points at a parent directory of
|
|
// encrypted data, i.e. is not a "real" directory. This is determined by
|
|
// checking for a sentinel string in the path.
|
|
func IsEncryptedParent(pathComponents []string) bool {
|
|
l := len(pathComponents)
|
|
if l == 2 && len(pathComponents[1]) != 2 {
|
|
return false
|
|
} else if l == 0 {
|
|
return false
|
|
}
|
|
if pathComponents[0] == "" {
|
|
return false
|
|
}
|
|
if pathComponents[0][1:] != encryptedDirExtension {
|
|
return false
|
|
}
|
|
if l < 2 {
|
|
return true
|
|
}
|
|
for _, comp := range pathComponents[2:] {
|
|
if len(comp) != maxPathComponent {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
type folderKeyRegistry struct {
|
|
keyGen *KeyGenerator
|
|
keys map[string]*[keySize]byte // folder ID -> key
|
|
mut sync.RWMutex
|
|
}
|
|
|
|
func newFolderKeyRegistry(keyGen *KeyGenerator, passwords map[string]string) *folderKeyRegistry {
|
|
return &folderKeyRegistry{
|
|
keyGen: keyGen,
|
|
keys: keysFromPasswords(keyGen, passwords),
|
|
}
|
|
}
|
|
|
|
func (r *folderKeyRegistry) get(folder string) (*[keySize]byte, bool) {
|
|
r.mut.RLock()
|
|
key, ok := r.keys[folder]
|
|
r.mut.RUnlock()
|
|
return key, ok
|
|
}
|
|
|
|
func (r *folderKeyRegistry) setPasswords(passwords map[string]string) {
|
|
r.mut.Lock()
|
|
r.keys = keysFromPasswords(r.keyGen, passwords)
|
|
r.mut.Unlock()
|
|
}
|