syncthing/vendor/github.com/cznic/b/example/int.go
2016-06-02 13:53:30 +02:00

930 lines
16 KiB
Go

// Copyright 2014 The b Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package b
import (
"fmt"
"io"
"sync"
)
const (
kx = 32 //TODO benchmark tune this number if using custom key/value type(s).
kd = 32 //TODO benchmark tune this number if using custom key/value type(s).
)
func init() {
if kd < 1 {
panic(fmt.Errorf("kd %d: out of range", kd))
}
if kx < 2 {
panic(fmt.Errorf("kx %d: out of range", kx))
}
}
var (
btDPool = sync.Pool{New: func() interface{} { return &d{} }}
btEPool = btEpool{sync.Pool{New: func() interface{} { return &Enumerator{} }}}
btTPool = btTpool{sync.Pool{New: func() interface{} { return &Tree{} }}}
btXPool = sync.Pool{New: func() interface{} { return &x{} }}
)
type btTpool struct{ sync.Pool }
func (p *btTpool) get(cmp Cmp) *Tree {
x := p.Get().(*Tree)
x.cmp = cmp
return x
}
type btEpool struct{ sync.Pool }
func (p *btEpool) get(err error, hit bool, i int, k int, q *d, t *Tree, ver int64) *Enumerator {
x := p.Get().(*Enumerator)
x.err, x.hit, x.i, x.k, x.q, x.t, x.ver = err, hit, i, k, q, t, ver
return x
}
type (
// Cmp compares a and b. Return value is:
//
// < 0 if a < b
// 0 if a == b
// > 0 if a > b
//
Cmp func(a, b int) int
d struct { // data page
c int
d [2*kd + 1]de
n *d
p *d
}
de struct { // d element
k int
v int
}
// Enumerator captures the state of enumerating a tree. It is returned
// from the Seek* methods. The enumerator is aware of any mutations
// made to the tree in the process of enumerating it and automatically
// resumes the enumeration at the proper key, if possible.
//
// However, once an Enumerator returns io.EOF to signal "no more
// items", it does no more attempt to "resync" on tree mutation(s). In
// other words, io.EOF from an Enumaretor is "sticky" (idempotent).
Enumerator struct {
err error
hit bool
i int
k int
q *d
t *Tree
ver int64
}
// Tree is a B+tree.
Tree struct {
c int
cmp Cmp
first *d
last *d
r interface{}
ver int64
}
xe struct { // x element
ch interface{}
k int
}
x struct { // index page
c int
x [2*kx + 2]xe
}
)
var ( // R/O zero values
zd d
zde de
ze Enumerator
zk int
zt Tree
zx x
zxe xe
)
func clr(q interface{}) {
switch x := q.(type) {
case *x:
for i := 0; i <= x.c; i++ { // Ch0 Sep0 ... Chn-1 Sepn-1 Chn
clr(x.x[i].ch)
}
*x = zx
btXPool.Put(x)
case *d:
*x = zd
btDPool.Put(x)
}
}
// -------------------------------------------------------------------------- x
func newX(ch0 interface{}) *x {
r := btXPool.Get().(*x)
r.x[0].ch = ch0
return r
}
func (q *x) extract(i int) {
q.c--
if i < q.c {
copy(q.x[i:], q.x[i+1:q.c+1])
q.x[q.c].ch = q.x[q.c+1].ch
q.x[q.c].k = zk // GC
q.x[q.c+1] = zxe // GC
}
}
func (q *x) insert(i int, k int, ch interface{}) *x {
c := q.c
if i < c {
q.x[c+1].ch = q.x[c].ch
copy(q.x[i+2:], q.x[i+1:c])
q.x[i+1].k = q.x[i].k
}
c++
q.c = c
q.x[i].k = k
q.x[i+1].ch = ch
return q
}
func (q *x) siblings(i int) (l, r *d) {
if i >= 0 {
if i > 0 {
l = q.x[i-1].ch.(*d)
}
if i < q.c {
r = q.x[i+1].ch.(*d)
}
}
return
}
// -------------------------------------------------------------------------- d
func (l *d) mvL(r *d, c int) {
copy(l.d[l.c:], r.d[:c])
copy(r.d[:], r.d[c:r.c])
l.c += c
r.c -= c
}
func (l *d) mvR(r *d, c int) {
copy(r.d[c:], r.d[:r.c])
copy(r.d[:c], l.d[l.c-c:])
r.c += c
l.c -= c
}
// ----------------------------------------------------------------------- Tree
// TreeNew returns a newly created, empty Tree. The compare function is used
// for key collation.
func TreeNew(cmp Cmp) *Tree {
return btTPool.get(cmp)
}
// Clear removes all K/V pairs from the tree.
func (t *Tree) Clear() {
if t.r == nil {
return
}
clr(t.r)
t.c, t.first, t.last, t.r = 0, nil, nil, nil
t.ver++
}
// Close performs Clear and recycles t to a pool for possible later reuse. No
// references to t should exist or such references must not be used afterwards.
func (t *Tree) Close() {
t.Clear()
*t = zt
btTPool.Put(t)
}
func (t *Tree) cat(p *x, q, r *d, pi int) {
t.ver++
q.mvL(r, r.c)
if r.n != nil {
r.n.p = q
} else {
t.last = q
}
q.n = r.n
*r = zd
btDPool.Put(r)
if p.c > 1 {
p.extract(pi)
p.x[pi].ch = q
return
}
switch x := t.r.(type) {
case *x:
*x = zx
btXPool.Put(x)
case *d:
*x = zd
btDPool.Put(x)
}
t.r = q
}
func (t *Tree) catX(p, q, r *x, pi int) {
t.ver++
q.x[q.c].k = p.x[pi].k
copy(q.x[q.c+1:], r.x[:r.c])
q.c += r.c + 1
q.x[q.c].ch = r.x[r.c].ch
*r = zx
btXPool.Put(r)
if p.c > 1 {
p.c--
pc := p.c
if pi < pc {
p.x[pi].k = p.x[pi+1].k
copy(p.x[pi+1:], p.x[pi+2:pc+1])
p.x[pc].ch = p.x[pc+1].ch
p.x[pc].k = zk // GC
p.x[pc+1].ch = nil // GC
}
return
}
switch x := t.r.(type) {
case *x:
*x = zx
btXPool.Put(x)
case *d:
*x = zd
btDPool.Put(x)
}
t.r = q
}
// Delete removes the k's KV pair, if it exists, in which case Delete returns
// true.
func (t *Tree) Delete(k int) (ok bool) {
pi := -1
var p *x
q := t.r
if q == nil {
return false
}
for {
var i int
i, ok = t.find(q, k)
if ok {
switch x := q.(type) {
case *x:
if x.c < kx && q != t.r {
x, i = t.underflowX(p, x, pi, i)
}
pi = i + 1
p = x
q = x.x[pi].ch
ok = false
continue
case *d:
t.extract(x, i)
if x.c >= kd {
return true
}
if q != t.r {
t.underflow(p, x, pi)
} else if t.c == 0 {
t.Clear()
}
return true
}
}
switch x := q.(type) {
case *x:
if x.c < kx && q != t.r {
x, i = t.underflowX(p, x, pi, i)
}
pi = i
p = x
q = x.x[i].ch
case *d:
return false
}
}
}
func (t *Tree) extract(q *d, i int) { // (r int) {
t.ver++
//r = q.d[i].v // prepared for Extract
q.c--
if i < q.c {
copy(q.d[i:], q.d[i+1:q.c+1])
}
q.d[q.c] = zde // GC
t.c--
return
}
func (t *Tree) find(q interface{}, k int) (i int, ok bool) {
var mk int
l := 0
switch x := q.(type) {
case *x:
h := x.c - 1
for l <= h {
m := (l + h) >> 1
mk = x.x[m].k
switch cmp := t.cmp(k, mk); {
case cmp > 0:
l = m + 1
case cmp == 0:
return m, true
default:
h = m - 1
}
}
case *d:
h := x.c - 1
for l <= h {
m := (l + h) >> 1
mk = x.d[m].k
switch cmp := t.cmp(k, mk); {
case cmp > 0:
l = m + 1
case cmp == 0:
return m, true
default:
h = m - 1
}
}
}
return l, false
}
// First returns the first item of the tree in the key collating order, or
// (zero-value, zero-value) if the tree is empty.
func (t *Tree) First() (k int, v int) {
if q := t.first; q != nil {
q := &q.d[0]
k, v = q.k, q.v
}
return
}
// Get returns the value associated with k and true if it exists. Otherwise Get
// returns (zero-value, false).
func (t *Tree) Get(k int) (v int, ok bool) {
q := t.r
if q == nil {
return
}
for {
var i int
if i, ok = t.find(q, k); ok {
switch x := q.(type) {
case *x:
q = x.x[i+1].ch
continue
case *d:
return x.d[i].v, true
}
}
switch x := q.(type) {
case *x:
q = x.x[i].ch
default:
return
}
}
}
func (t *Tree) insert(q *d, i int, k int, v int) *d {
t.ver++
c := q.c
if i < c {
copy(q.d[i+1:], q.d[i:c])
}
c++
q.c = c
q.d[i].k, q.d[i].v = k, v
t.c++
return q
}
// Last returns the last item of the tree in the key collating order, or
// (zero-value, zero-value) if the tree is empty.
func (t *Tree) Last() (k int, v int) {
if q := t.last; q != nil {
q := &q.d[q.c-1]
k, v = q.k, q.v
}
return
}
// Len returns the number of items in the tree.
func (t *Tree) Len() int {
return t.c
}
func (t *Tree) overflow(p *x, q *d, pi, i int, k int, v int) {
t.ver++
l, r := p.siblings(pi)
if l != nil && l.c < 2*kd {
l.mvL(q, 1)
t.insert(q, i-1, k, v)
p.x[pi-1].k = q.d[0].k
return
}
if r != nil && r.c < 2*kd {
if i < 2*kd {
q.mvR(r, 1)
t.insert(q, i, k, v)
p.x[pi].k = r.d[0].k
return
}
t.insert(r, 0, k, v)
p.x[pi].k = k
return
}
t.split(p, q, pi, i, k, v)
}
// Seek returns an Enumerator positioned on a an item such that k >= item's
// key. ok reports if k == item.key The Enumerator's position is possibly
// after the last item in the tree.
func (t *Tree) Seek(k int) (e *Enumerator, ok bool) {
q := t.r
if q == nil {
e = btEPool.get(nil, false, 0, k, nil, t, t.ver)
return
}
for {
var i int
if i, ok = t.find(q, k); ok {
switch x := q.(type) {
case *x:
q = x.x[i+1].ch
continue
case *d:
return btEPool.get(nil, ok, i, k, x, t, t.ver), true
}
}
switch x := q.(type) {
case *x:
q = x.x[i].ch
case *d:
return btEPool.get(nil, ok, i, k, x, t, t.ver), false
}
}
}
// SeekFirst returns an enumerator positioned on the first KV pair in the tree,
// if any. For an empty tree, err == io.EOF is returned and e will be nil.
func (t *Tree) SeekFirst() (e *Enumerator, err error) {
q := t.first
if q == nil {
return nil, io.EOF
}
return btEPool.get(nil, true, 0, q.d[0].k, q, t, t.ver), nil
}
// SeekLast returns an enumerator positioned on the last KV pair in the tree,
// if any. For an empty tree, err == io.EOF is returned and e will be nil.
func (t *Tree) SeekLast() (e *Enumerator, err error) {
q := t.last
if q == nil {
return nil, io.EOF
}
return btEPool.get(nil, true, q.c-1, q.d[q.c-1].k, q, t, t.ver), nil
}
// Set sets the value associated with k.
func (t *Tree) Set(k int, v int) {
//dbg("--- PRE Set(%v, %v)\n%s", k, v, t.dump())
//defer func() {
// dbg("--- POST\n%s\n====\n", t.dump())
//}()
pi := -1
var p *x
q := t.r
if q == nil {
z := t.insert(btDPool.Get().(*d), 0, k, v)
t.r, t.first, t.last = z, z, z
return
}
for {
i, ok := t.find(q, k)
if ok {
switch x := q.(type) {
case *x:
if x.c > 2*kx {
x, i = t.splitX(p, x, pi, i)
}
pi = i + 1
p = x
q = x.x[i+1].ch
continue
case *d:
x.d[i].v = v
}
return
}
switch x := q.(type) {
case *x:
if x.c > 2*kx {
x, i = t.splitX(p, x, pi, i)
}
pi = i
p = x
q = x.x[i].ch
case *d:
switch {
case x.c < 2*kd:
t.insert(x, i, k, v)
default:
t.overflow(p, x, pi, i, k, v)
}
return
}
}
}
// Put combines Get and Set in a more efficient way where the tree is walked
// only once. The upd(ater) receives (old-value, true) if a KV pair for k
// exists or (zero-value, false) otherwise. It can then return a (new-value,
// true) to create or overwrite the existing value in the KV pair, or
// (whatever, false) if it decides not to create or not to update the value of
// the KV pair.
//
// tree.Set(k, v) call conceptually equals calling
//
// tree.Put(k, func(int, bool){ return v, true })
//
// modulo the differing return values.
func (t *Tree) Put(k int, upd func(oldV int, exists bool) (newV int, write bool)) (oldV int, written bool) {
pi := -1
var p *x
q := t.r
var newV int
if q == nil {
// new KV pair in empty tree
newV, written = upd(newV, false)
if !written {
return
}
z := t.insert(btDPool.Get().(*d), 0, k, newV)
t.r, t.first, t.last = z, z, z
return
}
for {
i, ok := t.find(q, k)
if ok {
switch x := q.(type) {
case *x:
if x.c > 2*kx {
x, i = t.splitX(p, x, pi, i)
}
pi = i + 1
p = x
q = x.x[i+1].ch
continue
case *d:
oldV = x.d[i].v
newV, written = upd(oldV, true)
if !written {
return
}
x.d[i].v = newV
}
return
}
switch x := q.(type) {
case *x:
if x.c > 2*kx {
x, i = t.splitX(p, x, pi, i)
}
pi = i
p = x
q = x.x[i].ch
case *d: // new KV pair
newV, written = upd(newV, false)
if !written {
return
}
switch {
case x.c < 2*kd:
t.insert(x, i, k, newV)
default:
t.overflow(p, x, pi, i, k, newV)
}
return
}
}
}
func (t *Tree) split(p *x, q *d, pi, i int, k int, v int) {
t.ver++
r := btDPool.Get().(*d)
if q.n != nil {
r.n = q.n
r.n.p = r
} else {
t.last = r
}
q.n = r
r.p = q
copy(r.d[:], q.d[kd:2*kd])
for i := range q.d[kd:] {
q.d[kd+i] = zde
}
q.c = kd
r.c = kd
var done bool
if i > kd {
done = true
t.insert(r, i-kd, k, v)
}
if pi >= 0 {
p.insert(pi, r.d[0].k, r)
} else {
t.r = newX(q).insert(0, r.d[0].k, r)
}
if done {
return
}
t.insert(q, i, k, v)
}
func (t *Tree) splitX(p *x, q *x, pi int, i int) (*x, int) {
t.ver++
r := btXPool.Get().(*x)
copy(r.x[:], q.x[kx+1:])
q.c = kx
r.c = kx
if pi >= 0 {
p.insert(pi, q.x[kx].k, r)
q.x[kx].k = zk
for i := range q.x[kx+1:] {
q.x[kx+i+1] = zxe
}
switch {
case i < kx:
return q, i
case i == kx:
return p, pi
default: // i > kx
return r, i - kx - 1
}
}
nr := newX(q).insert(0, q.x[kx].k, r)
t.r = nr
q.x[kx].k = zk
for i := range q.x[kx+1:] {
q.x[kx+i+1] = zxe
}
switch {
case i < kx:
return q, i
case i == kx:
return nr, 0
default: // i > kx
return r, i - kx - 1
}
}
func (t *Tree) underflow(p *x, q *d, pi int) {
t.ver++
l, r := p.siblings(pi)
if l != nil && l.c+q.c >= 2*kd {
l.mvR(q, 1)
p.x[pi-1].k = q.d[0].k
return
}
if r != nil && q.c+r.c >= 2*kd {
q.mvL(r, 1)
p.x[pi].k = r.d[0].k
r.d[r.c] = zde // GC
return
}
if l != nil {
t.cat(p, l, q, pi-1)
return
}
t.cat(p, q, r, pi)
}
func (t *Tree) underflowX(p *x, q *x, pi int, i int) (*x, int) {
t.ver++
var l, r *x
if pi >= 0 {
if pi > 0 {
l = p.x[pi-1].ch.(*x)
}
if pi < p.c {
r = p.x[pi+1].ch.(*x)
}
}
if l != nil && l.c > kx {
q.x[q.c+1].ch = q.x[q.c].ch
copy(q.x[1:], q.x[:q.c])
q.x[0].ch = l.x[l.c].ch
q.x[0].k = p.x[pi-1].k
q.c++
i++
l.c--
p.x[pi-1].k = l.x[l.c].k
return q, i
}
if r != nil && r.c > kx {
q.x[q.c].k = p.x[pi].k
q.c++
q.x[q.c].ch = r.x[0].ch
p.x[pi].k = r.x[0].k
copy(r.x[:], r.x[1:r.c])
r.c--
rc := r.c
r.x[rc].ch = r.x[rc+1].ch
r.x[rc].k = zk
r.x[rc+1].ch = nil
return q, i
}
if l != nil {
i += l.c + 1
t.catX(p, l, q, pi-1)
q = l
return q, i
}
t.catX(p, q, r, pi)
return q, i
}
// ----------------------------------------------------------------- Enumerator
// Close recycles e to a pool for possible later reuse. No references to e
// should exist or such references must not be used afterwards.
func (e *Enumerator) Close() {
*e = ze
btEPool.Put(e)
}
// Next returns the currently enumerated item, if it exists and moves to the
// next item in the key collation order. If there is no item to return, err ==
// io.EOF is returned.
func (e *Enumerator) Next() (k int, v int, err error) {
if err = e.err; err != nil {
return
}
if e.ver != e.t.ver {
f, hit := e.t.Seek(e.k)
if !e.hit && hit {
if err = f.next(); err != nil {
return
}
}
*e = *f
f.Close()
}
if e.q == nil {
e.err, err = io.EOF, io.EOF
return
}
if e.i >= e.q.c {
if err = e.next(); err != nil {
return
}
}
i := e.q.d[e.i]
k, v = i.k, i.v
e.k, e.hit = k, false
e.next()
return
}
func (e *Enumerator) next() error {
if e.q == nil {
e.err = io.EOF
return io.EOF
}
switch {
case e.i < e.q.c-1:
e.i++
default:
if e.q, e.i = e.q.n, 0; e.q == nil {
e.err = io.EOF
}
}
return e.err
}
// Prev returns the currently enumerated item, if it exists and moves to the
// previous item in the key collation order. If there is no item to return, err
// == io.EOF is returned.
func (e *Enumerator) Prev() (k int, v int, err error) {
if err = e.err; err != nil {
return
}
if e.ver != e.t.ver {
f, hit := e.t.Seek(e.k)
if !e.hit && hit {
if err = f.prev(); err != nil {
return
}
}
*e = *f
f.Close()
}
if e.q == nil {
e.err, err = io.EOF, io.EOF
return
}
if e.i >= e.q.c {
if err = e.next(); err != nil {
return
}
}
i := e.q.d[e.i]
k, v = i.k, i.v
e.k, e.hit = k, false
e.prev()
return
}
func (e *Enumerator) prev() error {
if e.q == nil {
e.err = io.EOF
return io.EOF
}
switch {
case e.i > 0:
e.i--
default:
if e.q = e.q.p; e.q == nil {
e.err = io.EOF
break
}
e.i = e.q.c - 1
}
return e.err
}