syncthing/vendor/github.com/bkaradzic/go-lz4/writer.go
Jakob Borg 65aaa607ab Use Go 1.5 vendoring instead of Godeps
Change made by:

- running "gvt fetch" on each of the packages mentioned in
  Godeps/Godeps.json
- `rm -rf Godeps`
- tweaking the build scripts to not mention Godeps
- tweaking the build scripts to test `./lib/...`, `./cmd/...` explicitly
  (to avoid testing vendor)
- tweaking the build scripts to not juggle GOPATH for Godeps and instead
  set GO15VENDOREXPERIMENT.

This also results in some updated packages at the same time I bet.

Building with Go 1.3 and 1.4 still *works* but won't use our vendored
dependencies - the user needs to have the actual packages in their
GOPATH then, which they'll get with a normal "go get". Building with Go
1.6+ will get our vendored dependencies by default even when not using
our build script, which is nice.

By doing this we gain some freedom in that we can pick and choose
manually what to include in vendor, as it's not based on just dependency
analysis of our own code. This is also a risk as we might pick up
dependencies we are unaware of, as the build may work locally with those
packages present in GOPATH. On the other hand the build server will
detect this as it has no packages in it's GOPATH beyond what is included
in the repo.

Recommended tool to manage dependencies is github.com/FiloSottile/gvt.
2016-03-05 21:21:24 +01:00

191 lines
4.5 KiB
Go

/*
* Copyright 2011-2012 Branimir Karadzic. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY COPYRIGHT HOLDER ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
package lz4
import (
"encoding/binary"
"errors"
)
const (
minMatch = 4
hashLog = 17
hashTableSize = 1 << hashLog
hashShift = (minMatch * 8) - hashLog
incompressible uint32 = 128
uninitHash = 0x88888888
// MaxInputSize is the largest buffer than can be compressed in a single block
MaxInputSize = 0x7E000000
)
var (
// ErrTooLarge indicates the input buffer was too large
ErrTooLarge = errors.New("input too large")
)
type encoder struct {
src []byte
dst []byte
hashTable []uint32
pos uint32
anchor uint32
dpos uint32
}
// CompressBound returns the maximum length of a lz4 block, given it's uncompressed length
func CompressBound(isize int) int {
if isize > MaxInputSize {
return 0
}
return isize + ((isize) / 255) + 16 + 4
}
func (e *encoder) writeLiterals(length, mlLen, pos uint32) {
ln := length
var code byte
if ln > runMask-1 {
code = runMask
} else {
code = byte(ln)
}
if mlLen > mlMask-1 {
e.dst[e.dpos] = (code << mlBits) + byte(mlMask)
} else {
e.dst[e.dpos] = (code << mlBits) + byte(mlLen)
}
e.dpos++
if code == runMask {
ln -= runMask
for ; ln > 254; ln -= 255 {
e.dst[e.dpos] = 255
e.dpos++
}
e.dst[e.dpos] = byte(ln)
e.dpos++
}
for ii := uint32(0); ii < length; ii++ {
e.dst[e.dpos+ii] = e.src[pos+ii]
}
e.dpos += length
}
// Encode returns the encoded form of src. The returned array may be a
// sub-slice of dst if it was large enough to hold the entire output.
func Encode(dst, src []byte) ([]byte, error) {
if len(src) >= MaxInputSize {
return nil, ErrTooLarge
}
if n := CompressBound(len(src)); len(dst) < n {
dst = make([]byte, n)
}
e := encoder{src: src, dst: dst, hashTable: make([]uint32, hashTableSize)}
binary.LittleEndian.PutUint32(dst, uint32(len(src)))
e.dpos = 4
var (
step uint32 = 1
limit = incompressible
)
for {
if int(e.pos)+12 >= len(e.src) {
e.writeLiterals(uint32(len(e.src))-e.anchor, 0, e.anchor)
return e.dst[:e.dpos], nil
}
sequence := uint32(e.src[e.pos+3])<<24 | uint32(e.src[e.pos+2])<<16 | uint32(e.src[e.pos+1])<<8 | uint32(e.src[e.pos+0])
hash := (sequence * 2654435761) >> hashShift
ref := e.hashTable[hash] + uninitHash
e.hashTable[hash] = e.pos - uninitHash
if ((e.pos-ref)>>16) != 0 || uint32(e.src[ref+3])<<24|uint32(e.src[ref+2])<<16|uint32(e.src[ref+1])<<8|uint32(e.src[ref+0]) != sequence {
if e.pos-e.anchor > limit {
limit <<= 1
step += 1 + (step >> 2)
}
e.pos += step
continue
}
if step > 1 {
e.hashTable[hash] = ref - uninitHash
e.pos -= step - 1
step = 1
continue
}
limit = incompressible
ln := e.pos - e.anchor
back := e.pos - ref
anchor := e.anchor
e.pos += minMatch
ref += minMatch
e.anchor = e.pos
for int(e.pos) < len(e.src)-5 && e.src[e.pos] == e.src[ref] {
e.pos++
ref++
}
mlLen := e.pos - e.anchor
e.writeLiterals(ln, mlLen, anchor)
e.dst[e.dpos] = uint8(back)
e.dst[e.dpos+1] = uint8(back >> 8)
e.dpos += 2
if mlLen > mlMask-1 {
mlLen -= mlMask
for mlLen > 254 {
mlLen -= 255
e.dst[e.dpos] = 255
e.dpos++
}
e.dst[e.dpos] = byte(mlLen)
e.dpos++
}
e.anchor = e.pos
}
}