mirror of
https://github.com/octoleo/syncthing.git
synced 2025-01-10 10:16:24 +00:00
a1bcc15458
GitHub-Pull-Request: https://github.com/syncthing/syncthing/pull/4080
199 lines
3.6 KiB
Go
199 lines
3.6 KiB
Go
package bigfft
|
|
|
|
import (
|
|
"math/big"
|
|
)
|
|
|
|
// Arithmetic modulo 2^n+1.
|
|
|
|
// A fermat of length w+1 represents a number modulo 2^(w*_W) + 1. The last
|
|
// word is zero or one. A number has at most two representatives satisfying the
|
|
// 0-1 last word constraint.
|
|
type fermat nat
|
|
|
|
func (n fermat) String() string { return nat(n).String() }
|
|
|
|
func (z fermat) norm() {
|
|
n := len(z) - 1
|
|
c := z[n]
|
|
if c == 0 {
|
|
return
|
|
}
|
|
if z[0] >= c {
|
|
z[n] = 0
|
|
z[0] -= c
|
|
return
|
|
}
|
|
// z[0] < z[n].
|
|
subVW(z, z, c) // Substract c
|
|
if c > 1 {
|
|
z[n] -= c - 1
|
|
c = 1
|
|
}
|
|
// Add back c.
|
|
if z[n] == 1 {
|
|
z[n] = 0
|
|
return
|
|
} else {
|
|
addVW(z, z, 1)
|
|
}
|
|
}
|
|
|
|
// Shift computes (x << k) mod (2^n+1).
|
|
func (z fermat) Shift(x fermat, k int) {
|
|
if len(z) != len(x) {
|
|
println(len(z), len(x))
|
|
panic("len(z) != len(x) in Shift")
|
|
}
|
|
n := len(x) - 1
|
|
// Shift by n*_W is taking the opposite.
|
|
k %= 2 * n * _W
|
|
if k < 0 {
|
|
k += 2 * n * _W
|
|
}
|
|
neg := false
|
|
if k >= n*_W {
|
|
k -= n * _W
|
|
neg = true
|
|
}
|
|
|
|
kw, kb := k/_W, k%_W
|
|
|
|
z[n] = 1 // Add (-1)
|
|
if !neg {
|
|
for i := 0; i < kw; i++ {
|
|
z[i] = 0
|
|
}
|
|
// Shift left by kw words.
|
|
// x = a·2^(n-k) + b
|
|
// x<<k = (b<<k) - a
|
|
copy(z[kw:], x[:n-kw])
|
|
b := subVV(z[:kw+1], z[:kw+1], x[n-kw:])
|
|
if z[kw+1] > 0 {
|
|
z[kw+1] -= b
|
|
} else {
|
|
subVW(z[kw+1:], z[kw+1:], b)
|
|
}
|
|
} else {
|
|
for i := kw + 1; i < n; i++ {
|
|
z[i] = 0
|
|
}
|
|
// Shift left and negate, by kw words.
|
|
copy(z[:kw+1], x[n-kw:n+1]) // z_low = x_high
|
|
b := subVV(z[kw:n], z[kw:n], x[:n-kw]) // z_high -= x_low
|
|
z[n] -= b
|
|
}
|
|
// Add back 1.
|
|
if z[0] < ^big.Word(0) {
|
|
z[0]++
|
|
} else {
|
|
addVW(z, z, 1)
|
|
}
|
|
// Shift left by kb bits
|
|
shlVU(z, z, uint(kb))
|
|
z.norm()
|
|
}
|
|
|
|
// ShiftHalf shifts x by k/2 bits the left. Shifting by 1/2 bit
|
|
// is multiplication by sqrt(2) mod 2^n+1 which is 2^(3n/4) - 2^(n/4).
|
|
// A temporary buffer must be provided in tmp.
|
|
func (z fermat) ShiftHalf(x fermat, k int, tmp fermat) {
|
|
n := len(z) - 1
|
|
if k%2 == 0 {
|
|
z.Shift(x, k/2)
|
|
return
|
|
}
|
|
u := (k - 1) / 2
|
|
a := u + (3*_W/4)*n
|
|
b := u + (_W/4)*n
|
|
z.Shift(x, a)
|
|
tmp.Shift(x, b)
|
|
z.Sub(z, tmp)
|
|
}
|
|
|
|
// Add computes addition mod 2^n+1.
|
|
func (z fermat) Add(x, y fermat) fermat {
|
|
if len(z) != len(x) {
|
|
panic("Add: len(z) != len(x)")
|
|
}
|
|
addVV(z, x, y) // there cannot be a carry here.
|
|
z.norm()
|
|
return z
|
|
}
|
|
|
|
// Sub computes substraction mod 2^n+1.
|
|
func (z fermat) Sub(x, y fermat) fermat {
|
|
if len(z) != len(x) {
|
|
panic("Add: len(z) != len(x)")
|
|
}
|
|
n := len(y) - 1
|
|
b := subVV(z[:n], x[:n], y[:n])
|
|
b += y[n]
|
|
// If b > 0, we need to subtract b<<n, which is the same as adding b.
|
|
z[n] = x[n]
|
|
if z[0] <= ^big.Word(0)-b {
|
|
z[0] += b
|
|
} else {
|
|
addVW(z, z, b)
|
|
}
|
|
z.norm()
|
|
return z
|
|
}
|
|
|
|
func (z fermat) Mul(x, y fermat) fermat {
|
|
n := len(x) - 1
|
|
if n < 30 {
|
|
z = z[:2*n+2]
|
|
basicMul(z, x, y)
|
|
z = z[:2*n+1]
|
|
} else {
|
|
var xi, yi, zi big.Int
|
|
xi.SetBits(x)
|
|
yi.SetBits(y)
|
|
zi.SetBits(z)
|
|
zb := zi.Mul(&xi, &yi).Bits()
|
|
if len(zb) <= n {
|
|
// Short product.
|
|
copy(z, zb)
|
|
for i := len(zb); i < len(z); i++ {
|
|
z[i] = 0
|
|
}
|
|
return z
|
|
}
|
|
z = zb
|
|
}
|
|
// len(z) is at most 2n+1.
|
|
if len(z) > 2*n+1 {
|
|
panic("len(z) > 2n+1")
|
|
}
|
|
i := len(z) - (n + 1) // i <= n
|
|
c := subVV(z[1:i+1], z[1:i+1], z[n+1:])
|
|
z = z[:n+1]
|
|
z[n]++ // Add -1.
|
|
subVW(z[i+1:], z[i+1:], c)
|
|
// Add 1.
|
|
if z[n] == 1 {
|
|
z[n] = 0
|
|
} else {
|
|
addVW(z, z, 1)
|
|
}
|
|
z.norm()
|
|
return z
|
|
}
|
|
|
|
// copied from math/big
|
|
//
|
|
// basicMul multiplies x and y and leaves the result in z.
|
|
// The (non-normalized) result is placed in z[0 : len(x) + len(y)].
|
|
func basicMul(z, x, y fermat) {
|
|
// initialize z
|
|
for i := 0; i < len(z); i++ {
|
|
z[i] = 0
|
|
}
|
|
for i, d := range y {
|
|
if d != 0 {
|
|
z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d)
|
|
}
|
|
}
|
|
}
|