813 lines
18 KiB
Go

// Copyright 2014 The lldb Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Utilities to encode/decode and collate Go predeclared scalar types (and the
// typeless nil and []byte). The encoding format is a variation of the one
// used by the "encoding/gob" package.
package lldb
import (
"bytes"
"fmt"
"math"
"github.com/cznic/mathutil"
)
const (
gbNull = iota // 0x00
gbFalse // 0x01
gbTrue // 0x02
gbFloat0 // 0x03
gbFloat1 // 0x04
gbFloat2 // 0x05
gbFloat3 // 0x06
gbFloat4 // 0x07
gbFloat5 // 0x08
gbFloat6 // 0x09
gbFloat7 // 0x0a
gbFloat8 // 0x0b
gbComplex0 // 0x0c
gbComplex1 // 0x0d
gbComplex2 // 0x0e
gbComplex3 // 0x0f
gbComplex4 // 0x10
gbComplex5 // 0x11
gbComplex6 // 0x12
gbComplex7 // 0x13
gbComplex8 // 0x14
gbBytes00 // 0x15
gbBytes01 // 0x16
gbBytes02 // 0x17
gbBytes03 // 0x18
gbBytes04 // 0x19
gbBytes05 // 0x1a
gbBytes06 // 0x1b
gbBytes07 // 0x1c
gbBytes08 // 0x1d
gbBytes09 // 0x1e
gbBytes10 // 0x1f
gbBytes11 // 0x20
gbBytes12 // 0x21
gbBytes13 // 0x22
gbBytes14 // 0x23
gbBytes15 // 0x24
gbBytes16 // 0x25
gbBytes17 // Ox26
gbBytes1 // 0x27
gbBytes2 // 0x28: Offset by one to allow 64kB sized []byte.
gbString00 // 0x29
gbString01 // 0x2a
gbString02 // 0x2b
gbString03 // 0x2c
gbString04 // 0x2d
gbString05 // 0x2e
gbString06 // 0x2f
gbString07 // 0x30
gbString08 // 0x31
gbString09 // 0x32
gbString10 // 0x33
gbString11 // 0x34
gbString12 // 0x35
gbString13 // 0x36
gbString14 // 0x37
gbString15 // 0x38
gbString16 // 0x39
gbString17 // 0x3a
gbString1 // 0x3b
gbString2 // 0x3c
gbUintP1 // 0x3d
gbUintP2 // 0x3e
gbUintP3 // 0x3f
gbUintP4 // 0x40
gbUintP5 // 0x41
gbUintP6 // 0x42
gbUintP7 // 0x43
gbUintP8 // 0x44
gbIntM8 // 0x45
gbIntM7 // 0x46
gbIntM6 // 0x47
gbIntM5 // 0x48
gbIntM4 // 0x49
gbIntM3 // 0x4a
gbIntM2 // 0x4b
gbIntM1 // 0x4c
gbIntP1 // 0x4d
gbIntP2 // 0x4e
gbIntP3 // 0x4f
gbIntP4 // 0x50
gbIntP5 // 0x51
gbIntP6 // 0x52
gbIntP7 // 0x53
gbIntP8 // 0x54
gbInt0 // 0x55
gbIntMax = 255 - gbInt0 // 0xff == 170
)
// EncodeScalars encodes a vector of predeclared scalar type values to a
// []byte, making it suitable to store it as a "record" in a DB or to use it as
// a key of a BTree.
func EncodeScalars(scalars ...interface{}) (b []byte, err error) {
for _, scalar := range scalars {
switch x := scalar.(type) {
default:
return nil, &ErrINVAL{"EncodeScalars: unsupported type", fmt.Sprintf("%T in `%#v`", x, scalars)}
case nil:
b = append(b, gbNull)
case bool:
switch x {
case false:
b = append(b, gbFalse)
case true:
b = append(b, gbTrue)
}
case float32:
encFloat(float64(x), &b)
case float64:
encFloat(x, &b)
case complex64:
encComplex(complex128(x), &b)
case complex128:
encComplex(x, &b)
case string:
n := len(x)
if n <= 17 {
b = append(b, byte(gbString00+n))
b = append(b, []byte(x)...)
break
}
if n > 65535 {
return nil, fmt.Errorf("EncodeScalars: cannot encode string of length %d (limit 65536)", n)
}
pref := byte(gbString1)
if n > 255 {
pref++
}
b = append(b, pref)
encUint0(uint64(n), &b)
b = append(b, []byte(x)...)
case int8:
encInt(int64(x), &b)
case int16:
encInt(int64(x), &b)
case int32:
encInt(int64(x), &b)
case int64:
encInt(x, &b)
case int:
encInt(int64(x), &b)
case uint8:
encUint(uint64(x), &b)
case uint16:
encUint(uint64(x), &b)
case uint32:
encUint(uint64(x), &b)
case uint64:
encUint(x, &b)
case uint:
encUint(uint64(x), &b)
case []byte:
n := len(x)
if n <= 17 {
b = append(b, byte(gbBytes00+n))
b = append(b, []byte(x)...)
break
}
if n > 655356 {
return nil, fmt.Errorf("EncodeScalars: cannot encode []byte of length %d (limit 65536)", n)
}
pref := byte(gbBytes1)
if n > 255 {
pref++
}
b = append(b, pref)
if n <= 255 {
b = append(b, byte(n))
} else {
n--
b = append(b, byte(n>>8), byte(n))
}
b = append(b, x...)
}
}
return
}
func encComplex(f complex128, b *[]byte) {
encFloatPrefix(gbComplex0, real(f), b)
encFloatPrefix(gbComplex0, imag(f), b)
}
func encFloatPrefix(prefix byte, f float64, b *[]byte) {
u := math.Float64bits(f)
var n uint64
for i := 0; i < 8; i++ {
n <<= 8
n |= u & 0xFF
u >>= 8
}
bits := mathutil.BitLenUint64(n)
if bits == 0 {
*b = append(*b, prefix)
return
}
// 0 1 2 3 4 5 6 7 8 9
// . 1 1 1 1 1 1 1 1 2
encUintPrefix(prefix+1+byte((bits-1)>>3), n, b)
}
func encFloat(f float64, b *[]byte) {
encFloatPrefix(gbFloat0, f, b)
}
func encUint0(n uint64, b *[]byte) {
switch {
case n <= 0xff:
*b = append(*b, byte(n))
case n <= 0xffff:
*b = append(*b, byte(n>>8), byte(n))
case n <= 0xffffff:
*b = append(*b, byte(n>>16), byte(n>>8), byte(n))
case n <= 0xffffffff:
*b = append(*b, byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n <= 0xffffffffff:
*b = append(*b, byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n <= 0xffffffffffff:
*b = append(*b, byte(n>>40), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n <= 0xffffffffffffff:
*b = append(*b, byte(n>>48), byte(n>>40), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n <= math.MaxUint64:
*b = append(*b, byte(n>>56), byte(n>>48), byte(n>>40), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
}
}
func encUintPrefix(prefix byte, n uint64, b *[]byte) {
*b = append(*b, prefix)
encUint0(n, b)
}
func encUint(n uint64, b *[]byte) {
bits := mathutil.Max(1, mathutil.BitLenUint64(n))
encUintPrefix(gbUintP1+byte((bits-1)>>3), n, b)
}
func encInt(n int64, b *[]byte) {
switch {
case n < -0x100000000000000:
*b = append(*b, byte(gbIntM8), byte(n>>56), byte(n>>48), byte(n>>40), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n < -0x1000000000000:
*b = append(*b, byte(gbIntM7), byte(n>>48), byte(n>>40), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n < -0x10000000000:
*b = append(*b, byte(gbIntM6), byte(n>>40), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n < -0x100000000:
*b = append(*b, byte(gbIntM5), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n < -0x1000000:
*b = append(*b, byte(gbIntM4), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n < -0x10000:
*b = append(*b, byte(gbIntM3), byte(n>>16), byte(n>>8), byte(n))
case n < -0x100:
*b = append(*b, byte(gbIntM2), byte(n>>8), byte(n))
case n < 0:
*b = append(*b, byte(gbIntM1), byte(n))
case n <= gbIntMax:
*b = append(*b, byte(gbInt0+n))
case n <= 0xff:
*b = append(*b, gbIntP1, byte(n))
case n <= 0xffff:
*b = append(*b, gbIntP2, byte(n>>8), byte(n))
case n <= 0xffffff:
*b = append(*b, gbIntP3, byte(n>>16), byte(n>>8), byte(n))
case n <= 0xffffffff:
*b = append(*b, gbIntP4, byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n <= 0xffffffffff:
*b = append(*b, gbIntP5, byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n <= 0xffffffffffff:
*b = append(*b, gbIntP6, byte(n>>40), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n <= 0xffffffffffffff:
*b = append(*b, gbIntP7, byte(n>>48), byte(n>>40), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n <= 0x7fffffffffffffff:
*b = append(*b, gbIntP8, byte(n>>56), byte(n>>48), byte(n>>40), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
}
}
func decodeFloat(b []byte) float64 {
var u uint64
for i, v := range b {
u |= uint64(v) << uint((i+8-len(b))*8)
}
return math.Float64frombits(u)
}
// DecodeScalars decodes a []byte produced by EncodeScalars.
func DecodeScalars(b []byte) (scalars []interface{}, err error) {
b0 := b
for len(b) != 0 {
switch tag := b[0]; tag {
//default:
//return nil, fmt.Errorf("tag %d(%#x) not supported", b[0], b[0])
case gbNull:
scalars = append(scalars, nil)
b = b[1:]
case gbFalse:
scalars = append(scalars, false)
b = b[1:]
case gbTrue:
scalars = append(scalars, true)
b = b[1:]
case gbFloat0:
scalars = append(scalars, 0.0)
b = b[1:]
case gbFloat1, gbFloat2, gbFloat3, gbFloat4, gbFloat5, gbFloat6, gbFloat7, gbFloat8:
n := 1 + int(tag) - gbFloat0
if len(b) < n-1 {
goto corrupted
}
scalars = append(scalars, decodeFloat(b[1:n]))
b = b[n:]
case gbComplex0, gbComplex1, gbComplex2, gbComplex3, gbComplex4, gbComplex5, gbComplex6, gbComplex7, gbComplex8:
n := 1 + int(tag) - gbComplex0
if len(b) < n-1 {
goto corrupted
}
re := decodeFloat(b[1:n])
b = b[n:]
if len(b) == 0 {
goto corrupted
}
tag = b[0]
if tag < gbComplex0 || tag > gbComplex8 {
goto corrupted
}
n = 1 + int(tag) - gbComplex0
if len(b) < n-1 {
goto corrupted
}
scalars = append(scalars, complex(re, decodeFloat(b[1:n])))
b = b[n:]
case gbBytes00, gbBytes01, gbBytes02, gbBytes03, gbBytes04,
gbBytes05, gbBytes06, gbBytes07, gbBytes08, gbBytes09,
gbBytes10, gbBytes11, gbBytes12, gbBytes13, gbBytes14,
gbBytes15, gbBytes16, gbBytes17:
n := int(tag - gbBytes00)
if len(b) < n+1 {
goto corrupted
}
scalars = append(scalars, append([]byte(nil), b[1:n+1]...))
b = b[n+1:]
case gbBytes1:
if len(b) < 2 {
goto corrupted
}
n := int(b[1])
b = b[2:]
if len(b) < n {
goto corrupted
}
scalars = append(scalars, append([]byte(nil), b[:n]...))
b = b[n:]
case gbBytes2:
if len(b) < 3 {
goto corrupted
}
n := int(b[1])<<8 | int(b[2]) + 1
b = b[3:]
if len(b) < n {
goto corrupted
}
scalars = append(scalars, append([]byte(nil), b[:n]...))
b = b[n:]
case gbString00, gbString01, gbString02, gbString03, gbString04,
gbString05, gbString06, gbString07, gbString08, gbString09,
gbString10, gbString11, gbString12, gbString13, gbString14,
gbString15, gbString16, gbString17:
n := int(tag - gbString00)
if len(b) < n+1 {
goto corrupted
}
scalars = append(scalars, string(b[1:n+1]))
b = b[n+1:]
case gbString1:
if len(b) < 2 {
goto corrupted
}
n := int(b[1])
b = b[2:]
if len(b) < n {
goto corrupted
}
scalars = append(scalars, string(b[:n]))
b = b[n:]
case gbString2:
if len(b) < 3 {
goto corrupted
}
n := int(b[1])<<8 | int(b[2])
b = b[3:]
if len(b) < n {
goto corrupted
}
scalars = append(scalars, string(b[:n]))
b = b[n:]
case gbUintP1, gbUintP2, gbUintP3, gbUintP4, gbUintP5, gbUintP6, gbUintP7, gbUintP8:
b = b[1:]
n := 1 + int(tag) - gbUintP1
if len(b) < n {
goto corrupted
}
var u uint64
for _, v := range b[:n] {
u = u<<8 | uint64(v)
}
scalars = append(scalars, u)
b = b[n:]
case gbIntM8, gbIntM7, gbIntM6, gbIntM5, gbIntM4, gbIntM3, gbIntM2, gbIntM1:
b = b[1:]
n := 8 - (int(tag) - gbIntM8)
if len(b) < n {
goto corrupted
}
u := uint64(math.MaxUint64)
for _, v := range b[:n] {
u = u<<8 | uint64(v)
}
scalars = append(scalars, int64(u))
b = b[n:]
case gbIntP1, gbIntP2, gbIntP3, gbIntP4, gbIntP5, gbIntP6, gbIntP7, gbIntP8:
b = b[1:]
n := 1 + int(tag) - gbIntP1
if len(b) < n {
goto corrupted
}
i := int64(0)
for _, v := range b[:n] {
i = i<<8 | int64(v)
}
scalars = append(scalars, i)
b = b[n:]
default:
scalars = append(scalars, int64(b[0])-gbInt0)
b = b[1:]
}
}
return append([]interface{}(nil), scalars...), nil
corrupted:
return nil, &ErrDecodeScalars{append([]byte(nil), b0...), len(b0) - len(b)}
}
func collateComplex(x, y complex128) int {
switch rx, ry := real(x), real(y); {
case rx < ry:
return -1
case rx == ry:
switch ix, iy := imag(x), imag(y); {
case ix < iy:
return -1
case ix == iy:
return 0
case ix > iy:
return 1
}
}
//case rx > ry:
return 1
}
func collateFloat(x, y float64) int {
switch {
case x < y:
return -1
case x == y:
return 0
}
//case x > y:
return 1
}
func collateInt(x, y int64) int {
switch {
case x < y:
return -1
case x == y:
return 0
}
//case x > y:
return 1
}
func collateUint(x, y uint64) int {
switch {
case x < y:
return -1
case x == y:
return 0
}
//case x > y:
return 1
}
func collateIntUint(x int64, y uint64) int {
if y > math.MaxInt64 {
return -1
}
return collateInt(x, int64(y))
}
func collateUintInt(x uint64, y int64) int {
return -collateIntUint(y, x)
}
func collateType(i interface{}) (r interface{}, err error) {
switch x := i.(type) {
default:
return nil, fmt.Errorf("invalid collate type %T", x)
case nil:
return i, nil
case bool:
return i, nil
case int8:
return int64(x), nil
case int16:
return int64(x), nil
case int32:
return int64(x), nil
case int64:
return i, nil
case int:
return int64(x), nil
case uint8:
return uint64(x), nil
case uint16:
return uint64(x), nil
case uint32:
return uint64(x), nil
case uint64:
return i, nil
case uint:
return uint64(x), nil
case float32:
return float64(x), nil
case float64:
return i, nil
case complex64:
return complex128(x), nil
case complex128:
return i, nil
case []byte:
return i, nil
case string:
return i, nil
}
}
// Collate collates two arrays of Go predeclared scalar types (and the typeless
// nil or []byte). If any other type appears in x or y, Collate will return a
// non nil error. String items are collated using strCollate or lexically
// byte-wise (as when using Go comparison operators) when strCollate is nil.
// []byte items are collated using bytes.Compare.
//
// Collate returns:
//
// -1 if x < y
// 0 if x == y
// +1 if x > y
//
// The same value as defined above must be returned from strCollate.
//
// The "outer" ordering is: nil, bool, number, []byte, string. IOW, nil is
// "smaller" than anything else except other nil, numbers collate before
// []byte, []byte collate before strings, etc.
//
// Integers and real numbers collate as expected in math. However, complex
// numbers are not ordered in Go. Here the ordering is defined: Complex numbers
// are in comparison considered first only by their real part. Iff the result
// is equality then the imaginary part is used to determine the ordering. In
// this "second order" comparing, integers and real numbers are considered as
// complex numbers with a zero imaginary part.
func Collate(x, y []interface{}, strCollate func(string, string) int) (r int, err error) {
nx, ny := len(x), len(y)
switch {
case nx == 0 && ny != 0:
return -1, nil
case nx == 0 && ny == 0:
return 0, nil
case nx != 0 && ny == 0:
return 1, nil
}
r = 1
if nx > ny {
x, y, r = y, x, -r
}
var c int
for i, xi0 := range x {
yi0 := y[i]
xi, err := collateType(xi0)
if err != nil {
return 0, err
}
yi, err := collateType(yi0)
if err != nil {
return 0, err
}
switch x := xi.(type) {
default:
panic(fmt.Errorf("internal error: %T", x))
case nil:
switch yi.(type) {
case nil:
// nop
default:
return -r, nil
}
case bool:
switch y := yi.(type) {
case nil:
return r, nil
case bool:
switch {
case !x && y:
return -r, nil
case x == y:
// nop
case x && !y:
return r, nil
}
default:
return -r, nil
}
case int64:
switch y := yi.(type) {
case nil, bool:
return r, nil
case int64:
c = collateInt(x, y)
case uint64:
c = collateIntUint(x, y)
case float64:
c = collateFloat(float64(x), y)
case complex128:
c = collateComplex(complex(float64(x), 0), y)
case []byte:
return -r, nil
case string:
return -r, nil
}
if c != 0 {
return c * r, nil
}
case uint64:
switch y := yi.(type) {
case nil, bool:
return r, nil
case int64:
c = collateUintInt(x, y)
case uint64:
c = collateUint(x, y)
case float64:
c = collateFloat(float64(x), y)
case complex128:
c = collateComplex(complex(float64(x), 0), y)
case []byte:
return -r, nil
case string:
return -r, nil
}
if c != 0 {
return c * r, nil
}
case float64:
switch y := yi.(type) {
case nil, bool:
return r, nil
case int64:
c = collateFloat(x, float64(y))
case uint64:
c = collateFloat(x, float64(y))
case float64:
c = collateFloat(x, y)
case complex128:
c = collateComplex(complex(x, 0), y)
case []byte:
return -r, nil
case string:
return -r, nil
}
if c != 0 {
return c * r, nil
}
case complex128:
switch y := yi.(type) {
case nil, bool:
return r, nil
case int64:
c = collateComplex(x, complex(float64(y), 0))
case uint64:
c = collateComplex(x, complex(float64(y), 0))
case float64:
c = collateComplex(x, complex(y, 0))
case complex128:
c = collateComplex(x, y)
case []byte:
return -r, nil
case string:
return -r, nil
}
if c != 0 {
return c * r, nil
}
case []byte:
switch y := yi.(type) {
case nil, bool, int64, uint64, float64, complex128:
return r, nil
case []byte:
c = bytes.Compare(x, y)
case string:
return -r, nil
}
if c != 0 {
return c * r, nil
}
case string:
switch y := yi.(type) {
case nil, bool, int64, uint64, float64, complex128:
return r, nil
case []byte:
return r, nil
case string:
switch {
case strCollate != nil:
c = strCollate(x, y)
case x < y:
return -r, nil
case x == y:
c = 0
case x > y:
return r, nil
}
}
if c != 0 {
return c * r, nil
}
}
}
if nx == ny {
return 0, nil
}
return -r, nil
}