mirror of
https://github.com/octoleo/syncthing.git
synced 2024-11-15 01:34:05 +00:00
916ec63af6
This is a new revision of the discovery server. Relevant changes and non-changes: - Protocol towards clients is unchanged. - Recommended large scale design is still to be deployed nehind nginx (I tested, and it's still a lot faster at terminating TLS). - Database backend is leveldb again, only. It scales enough, is easy to setup, and we don't need any backend to take care of. - Server supports replication. This is a simple TCP channel - protect it with a firewall when deploying over the internet. (We deploy this within the same datacenter, and with firewall.) Any incoming client announces are sent over the replication channel(s) to other peer discosrvs. Incoming replication changes are applied to the database as if they came from clients, but without the TLS/certificate overhead. - Metrics are exposed using the prometheus library, when enabled. - The database values and replication protocol is protobuf, because JSON was quite CPU intensive when I tried that and benchmarked it. - The "Retry-After" value for failed lookups gets slowly increased from a default of 120 seconds, by 5 seconds for each failed lookup, independently by each discosrv. This lowers the query load over time for clients that are never seen. The Retry-After maxes out at 3600 after a couple of weeks of this increase. The number of failed lookups is stored in the database, now and then (avoiding making each lookup a database put). All in all this means clients can be pointed towards a cluster using just multiple A / AAAA records to gain both load sharing and redundancy (if one is down, clients will talk to the remaining ones). GitHub-Pull-Request: https://github.com/syncthing/syncthing/pull/4648
569 lines
13 KiB
Go
569 lines
13 KiB
Go
package mark
|
|
|
|
import (
|
|
"regexp"
|
|
"strings"
|
|
"unicode/utf8"
|
|
)
|
|
|
|
// type position
|
|
type Pos int
|
|
|
|
// itemType identifies the type of lex items.
|
|
type itemType int
|
|
|
|
// Item represent a token or text string returned from the scanner
|
|
type item struct {
|
|
typ itemType // The type of this item.
|
|
pos Pos // The starting position, in bytes, of this item in the input string.
|
|
val string // The value of this item.
|
|
}
|
|
|
|
const eof = -1 // Zero value so closed channel delivers EOF
|
|
|
|
const (
|
|
itemError itemType = iota // Error occurred; value is text of error
|
|
itemEOF
|
|
itemNewLine
|
|
itemHTML
|
|
itemHeading
|
|
itemLHeading
|
|
itemBlockQuote
|
|
itemList
|
|
itemListItem
|
|
itemLooseItem
|
|
itemCodeBlock
|
|
itemGfmCodeBlock
|
|
itemHr
|
|
itemTable
|
|
itemLpTable
|
|
itemTableRow
|
|
itemTableCell
|
|
itemStrong
|
|
itemItalic
|
|
itemStrike
|
|
itemCode
|
|
itemLink
|
|
itemDefLink
|
|
itemRefLink
|
|
itemAutoLink
|
|
itemGfmLink
|
|
itemImage
|
|
itemRefImage
|
|
itemText
|
|
itemBr
|
|
itemPipe
|
|
itemIndent
|
|
)
|
|
|
|
// stateFn represents the state of the scanner as a function that returns the next state.
|
|
type stateFn func(*lexer) stateFn
|
|
|
|
// Lexer interface, used to composed it inside the parser
|
|
type Lexer interface {
|
|
nextItem() item
|
|
}
|
|
|
|
// lexer holds the state of the scanner.
|
|
type lexer struct {
|
|
input string // the string being scanned
|
|
state stateFn // the next lexing function to enter
|
|
pos Pos // current position in the input
|
|
start Pos // start position of this item
|
|
width Pos // width of last rune read from input
|
|
lastPos Pos // position of most recent item returned by nextItem
|
|
items chan item // channel of scanned items
|
|
}
|
|
|
|
// lex creates a new lexer for the input string.
|
|
func lex(input string) *lexer {
|
|
l := &lexer{
|
|
input: input,
|
|
items: make(chan item),
|
|
}
|
|
go l.run()
|
|
return l
|
|
}
|
|
|
|
// lexInline create a new lexer for one phase lexing(inline blocks).
|
|
func lexInline(input string) *lexer {
|
|
l := &lexer{
|
|
input: input,
|
|
items: make(chan item),
|
|
}
|
|
go l.lexInline()
|
|
return l
|
|
}
|
|
|
|
// run runs the state machine for the lexer.
|
|
func (l *lexer) run() {
|
|
for l.state = lexAny; l.state != nil; {
|
|
l.state = l.state(l)
|
|
}
|
|
close(l.items)
|
|
}
|
|
|
|
// next return the next rune in the input
|
|
func (l *lexer) next() rune {
|
|
if int(l.pos) >= len(l.input) {
|
|
l.width = 0
|
|
return eof
|
|
}
|
|
r, w := utf8.DecodeRuneInString(l.input[l.pos:])
|
|
l.width = Pos(w)
|
|
l.pos += l.width
|
|
return r
|
|
}
|
|
|
|
// lexAny scanner is kind of forwarder, it get the current char in the text
|
|
// and forward it to the appropriate scanner based on some conditions.
|
|
func lexAny(l *lexer) stateFn {
|
|
switch r := l.peek(); r {
|
|
case '*', '-', '_':
|
|
return lexHr
|
|
case '+', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
|
|
return lexList
|
|
case '<':
|
|
return lexHTML
|
|
case '>':
|
|
return lexBlockQuote
|
|
case '[':
|
|
return lexDefLink
|
|
case '#':
|
|
return lexHeading
|
|
case '`', '~':
|
|
return lexGfmCode
|
|
case ' ':
|
|
if reCodeBlock.MatchString(l.input[l.pos:]) {
|
|
return lexCode
|
|
} else if reGfmCode.MatchString(l.input[l.pos:]) {
|
|
return lexGfmCode
|
|
}
|
|
// Keep moving forward until we get all the indentation size
|
|
for ; r == l.peek(); r = l.next() {
|
|
}
|
|
l.emit(itemIndent)
|
|
return lexAny
|
|
case '|':
|
|
if m := reTable.itemLp.MatchString(l.input[l.pos:]); m {
|
|
l.emit(itemLpTable)
|
|
return lexTable
|
|
}
|
|
fallthrough
|
|
default:
|
|
if m := reTable.item.MatchString(l.input[l.pos:]); m {
|
|
l.emit(itemTable)
|
|
return lexTable
|
|
}
|
|
return lexText
|
|
}
|
|
}
|
|
|
|
// lexHeading test if the current text position is an heading item.
|
|
// is so, it will emit an item and return back to lenAny function
|
|
// else, lex it as a simple text value
|
|
func lexHeading(l *lexer) stateFn {
|
|
if m := reHeading.FindString(l.input[l.pos:]); m != "" {
|
|
l.pos += Pos(len(m))
|
|
l.emit(itemHeading)
|
|
return lexAny
|
|
}
|
|
return lexText
|
|
}
|
|
|
|
// lexHr test if the current text position is an horizontal rules item.
|
|
// is so, it will emit an horizontal rule item and return back to lenAny function
|
|
// else, forward it to lexList function
|
|
func lexHr(l *lexer) stateFn {
|
|
if match := reHr.FindString(l.input[l.pos:]); match != "" {
|
|
l.pos += Pos(len(match))
|
|
l.emit(itemHr)
|
|
return lexAny
|
|
}
|
|
return lexList
|
|
}
|
|
|
|
// lexGfmCode test if the current text position is start of GFM code-block item.
|
|
// if so, it will generate regexp based on the fence type[`~] and it length.
|
|
// it scan until the end, and then emit the code-block item and return back to the
|
|
// lenAny forwarder.
|
|
// else, lex it as a simple inline text.
|
|
func lexGfmCode(l *lexer) stateFn {
|
|
if match := reGfmCode.FindStringSubmatch(l.input[l.pos:]); len(match) != 0 {
|
|
l.pos += Pos(len(match[0]))
|
|
fence := match[2]
|
|
// Generate Regexp based on fence type[`~] and length
|
|
reGfmEnd := reGfmCode.endGen(fence[0:1], len(fence))
|
|
infoContainer := reGfmEnd.FindStringSubmatch(l.input[l.pos:])
|
|
l.pos += Pos(len(infoContainer[0]))
|
|
infoString := infoContainer[1]
|
|
// Remove leading and trailing spaces
|
|
if indent := len(match[1]); indent > 0 {
|
|
reSpace := reSpaceGen(indent)
|
|
infoString = reSpace.ReplaceAllString(infoString, "")
|
|
}
|
|
l.emit(itemGfmCodeBlock, match[0]+infoString)
|
|
return lexAny
|
|
}
|
|
return lexText
|
|
}
|
|
|
|
// lexCode scans code block.
|
|
func lexCode(l *lexer) stateFn {
|
|
match := reCodeBlock.FindString(l.input[l.pos:])
|
|
l.pos += Pos(len(match))
|
|
l.emit(itemCodeBlock)
|
|
return lexAny
|
|
}
|
|
|
|
// lexText scans until end-of-line(\n)
|
|
func lexText(l *lexer) stateFn {
|
|
// Drain text before emitting
|
|
emit := func(item itemType, pos Pos) {
|
|
if l.pos > l.start {
|
|
l.emit(itemText)
|
|
}
|
|
l.pos += pos
|
|
l.emit(item)
|
|
}
|
|
Loop:
|
|
for {
|
|
switch r := l.peek(); r {
|
|
case eof:
|
|
emit(itemEOF, Pos(0))
|
|
break Loop
|
|
case '\n':
|
|
// CM 4.4: An indented code block cannot interrupt a paragraph.
|
|
if l.pos > l.start && strings.HasPrefix(l.input[l.pos+1:], " ") {
|
|
l.next()
|
|
continue
|
|
}
|
|
emit(itemNewLine, l.width)
|
|
break Loop
|
|
default:
|
|
// Test for Setext-style headers
|
|
if m := reLHeading.FindString(l.input[l.pos:]); m != "" {
|
|
emit(itemLHeading, Pos(len(m)))
|
|
break Loop
|
|
}
|
|
l.next()
|
|
}
|
|
}
|
|
return lexAny
|
|
}
|
|
|
|
// backup steps back one rune. Can only be called once per call of next.
|
|
func (l *lexer) backup() {
|
|
l.pos -= l.width
|
|
}
|
|
|
|
// peek returns but does not consume the next rune in the input.
|
|
func (l *lexer) peek() rune {
|
|
r := l.next()
|
|
l.backup()
|
|
return r
|
|
}
|
|
|
|
// emit passes an item back to the client.
|
|
func (l *lexer) emit(t itemType, s ...string) {
|
|
if len(s) == 0 {
|
|
s = append(s, l.input[l.start:l.pos])
|
|
}
|
|
l.items <- item{t, l.start, s[0]}
|
|
l.start = l.pos
|
|
}
|
|
|
|
// lexItem return the next item token, called by the parser.
|
|
func (l *lexer) nextItem() item {
|
|
item := <-l.items
|
|
l.lastPos = l.pos
|
|
return item
|
|
}
|
|
|
|
// One phase lexing(inline reason)
|
|
func (l *lexer) lexInline() {
|
|
escape := regexp.MustCompile("^\\\\([\\`*{}\\[\\]()#+\\-.!_>~|])")
|
|
// Drain text before emitting
|
|
emit := func(item itemType, pos int) {
|
|
if l.pos > l.start {
|
|
l.emit(itemText)
|
|
}
|
|
l.pos += Pos(pos)
|
|
l.emit(item)
|
|
}
|
|
Loop:
|
|
for {
|
|
switch r := l.peek(); r {
|
|
case eof:
|
|
if l.pos > l.start {
|
|
l.emit(itemText)
|
|
}
|
|
break Loop
|
|
// backslash escaping
|
|
case '\\':
|
|
if m := escape.FindStringSubmatch(l.input[l.pos:]); len(m) != 0 {
|
|
if l.pos > l.start {
|
|
l.emit(itemText)
|
|
}
|
|
l.pos += Pos(len(m[0]))
|
|
l.emit(itemText, m[1])
|
|
break
|
|
}
|
|
fallthrough
|
|
case ' ':
|
|
if m := reBr.FindString(l.input[l.pos:]); m != "" {
|
|
// pos - length of new-line
|
|
emit(itemBr, len(m))
|
|
break
|
|
}
|
|
l.next()
|
|
case '_', '*', '~', '`':
|
|
input := l.input[l.pos:]
|
|
// Strong
|
|
if m := reStrong.FindString(input); m != "" {
|
|
emit(itemStrong, len(m))
|
|
break
|
|
}
|
|
// Italic
|
|
if m := reItalic.FindString(input); m != "" {
|
|
emit(itemItalic, len(m))
|
|
break
|
|
}
|
|
// Strike
|
|
if m := reStrike.FindString(input); m != "" {
|
|
emit(itemStrike, len(m))
|
|
break
|
|
}
|
|
// InlineCode
|
|
if m := reCode.FindString(input); m != "" {
|
|
emit(itemCode, len(m))
|
|
break
|
|
}
|
|
l.next()
|
|
// itemLink, itemImage, itemRefLink, itemRefImage
|
|
case '[', '!':
|
|
input := l.input[l.pos:]
|
|
if m := reLink.FindString(input); m != "" {
|
|
pos := len(m)
|
|
if r == '[' {
|
|
emit(itemLink, pos)
|
|
} else {
|
|
emit(itemImage, pos)
|
|
}
|
|
break
|
|
}
|
|
if m := reRefLink.FindString(input); m != "" {
|
|
pos := len(m)
|
|
if r == '[' {
|
|
emit(itemRefLink, pos)
|
|
} else {
|
|
emit(itemRefImage, pos)
|
|
}
|
|
break
|
|
}
|
|
l.next()
|
|
// itemAutoLink, htmlBlock
|
|
case '<':
|
|
if m := reAutoLink.FindString(l.input[l.pos:]); m != "" {
|
|
emit(itemAutoLink, len(m))
|
|
break
|
|
}
|
|
if match, res := l.matchHTML(l.input[l.pos:]); match {
|
|
emit(itemHTML, len(res))
|
|
break
|
|
}
|
|
l.next()
|
|
default:
|
|
if m := reGfmLink.FindString(l.input[l.pos:]); m != "" {
|
|
emit(itemGfmLink, len(m))
|
|
break
|
|
}
|
|
l.next()
|
|
}
|
|
}
|
|
close(l.items)
|
|
}
|
|
|
|
// lexHTML.
|
|
func lexHTML(l *lexer) stateFn {
|
|
if match, res := l.matchHTML(l.input[l.pos:]); match {
|
|
l.pos += Pos(len(res))
|
|
l.emit(itemHTML)
|
|
return lexAny
|
|
}
|
|
return lexText
|
|
}
|
|
|
|
// Test if the given input is match the HTML pattern(blocks only)
|
|
func (l *lexer) matchHTML(input string) (bool, string) {
|
|
if m := reHTML.comment.FindString(input); m != "" {
|
|
return true, m
|
|
}
|
|
if m := reHTML.item.FindStringSubmatch(input); len(m) != 0 {
|
|
el, name := m[0], m[1]
|
|
// if name is a span... is a text
|
|
if reHTML.span.MatchString(name) {
|
|
return false, ""
|
|
}
|
|
// if it's a self-closed html element, but not a itemAutoLink
|
|
if strings.HasSuffix(el, "/>") && !reAutoLink.MatchString(el) {
|
|
return true, el
|
|
}
|
|
if name == reHTML.CDATA_OPEN {
|
|
name = reHTML.CDATA_CLOSE
|
|
}
|
|
reEndTag := reHTML.endTagGen(name)
|
|
if m := reEndTag.FindString(input); m != "" {
|
|
return true, m
|
|
}
|
|
}
|
|
return false, ""
|
|
}
|
|
|
|
// lexDefLink scans link definition
|
|
func lexDefLink(l *lexer) stateFn {
|
|
if m := reDefLink.FindString(l.input[l.pos:]); m != "" {
|
|
l.pos += Pos(len(m))
|
|
l.emit(itemDefLink)
|
|
return lexAny
|
|
}
|
|
return lexText
|
|
}
|
|
|
|
// lexList scans ordered and unordered lists.
|
|
func lexList(l *lexer) stateFn {
|
|
match, items := l.matchList(l.input[l.pos:])
|
|
if !match {
|
|
return lexText
|
|
}
|
|
var space int
|
|
var typ itemType
|
|
for i, item := range items {
|
|
// Emit itemList on the first loop
|
|
if i == 0 {
|
|
l.emit(itemList, reList.marker.FindStringSubmatch(item)[1])
|
|
}
|
|
// Initialize each loop
|
|
typ = itemListItem
|
|
space = len(item)
|
|
l.pos += Pos(space)
|
|
item = reList.marker.ReplaceAllString(item, "")
|
|
// Indented
|
|
if strings.Contains(item, "\n ") {
|
|
space -= len(item)
|
|
reSpace := reSpaceGen(space)
|
|
item = reSpace.ReplaceAllString(item, "")
|
|
}
|
|
// If current is loose
|
|
for _, l := range reList.loose.FindAllString(item, -1) {
|
|
if len(strings.TrimSpace(l)) > 0 || i != len(items)-1 {
|
|
typ = itemLooseItem
|
|
break
|
|
}
|
|
}
|
|
// or previous
|
|
if typ != itemLooseItem && i > 0 && strings.HasSuffix(items[i-1], "\n\n") {
|
|
typ = itemLooseItem
|
|
}
|
|
l.emit(typ, strings.TrimSpace(item))
|
|
}
|
|
return lexAny
|
|
}
|
|
|
|
func (l *lexer) matchList(input string) (bool, []string) {
|
|
var res []string
|
|
reItem := reList.item
|
|
if !reItem.MatchString(input) {
|
|
return false, res
|
|
}
|
|
// First item
|
|
m := reItem.FindStringSubmatch(input)
|
|
item, depth := m[0], len(m[1])
|
|
input = input[len(item):]
|
|
// Loop over the input
|
|
for len(input) > 0 {
|
|
// Count new-lines('\n')
|
|
if m := reList.scanNewLine(input); m != "" {
|
|
item += m
|
|
input = input[len(m):]
|
|
if len(m) >= 2 || !reItem.MatchString(input) && !strings.HasPrefix(input, " ") {
|
|
break
|
|
}
|
|
}
|
|
// DefLink or hr
|
|
if reDefLink.MatchString(input) || reHr.MatchString(input) {
|
|
break
|
|
}
|
|
// It's list in the same depth
|
|
if m := reItem.FindStringSubmatch(input); len(m) > 0 && len(m[1]) == depth {
|
|
if item != "" {
|
|
res = append(res, item)
|
|
}
|
|
item = m[0]
|
|
input = input[len(item):]
|
|
} else {
|
|
m := reList.scanLine(input)
|
|
item += m
|
|
input = input[len(m):]
|
|
}
|
|
}
|
|
// Drain res
|
|
if item != "" {
|
|
res = append(res, item)
|
|
}
|
|
return true, res
|
|
}
|
|
|
|
// Test if the given input match blockquote
|
|
func (l *lexer) matchBlockQuote(input string) (bool, string) {
|
|
match := reBlockQuote.FindString(input)
|
|
if match == "" {
|
|
return false, match
|
|
}
|
|
lines := strings.Split(match, "\n")
|
|
for i, line := range lines {
|
|
// if line is a link-definition or horizontal role, we cut the match until this point
|
|
if reDefLink.MatchString(line) || reHr.MatchString(line) {
|
|
match = strings.Join(lines[0:i], "\n")
|
|
break
|
|
}
|
|
}
|
|
return true, match
|
|
}
|
|
|
|
// lexBlockQuote
|
|
func lexBlockQuote(l *lexer) stateFn {
|
|
if match, res := l.matchBlockQuote(l.input[l.pos:]); match {
|
|
l.pos += Pos(len(res))
|
|
l.emit(itemBlockQuote)
|
|
return lexAny
|
|
}
|
|
return lexText
|
|
}
|
|
|
|
// lexTable
|
|
func lexTable(l *lexer) stateFn {
|
|
re := reTable.item
|
|
if l.peek() == '|' {
|
|
re = reTable.itemLp
|
|
}
|
|
table := re.FindStringSubmatch(l.input[l.pos:])
|
|
l.pos += Pos(len(table[0]))
|
|
l.start = l.pos
|
|
// Ignore the first match, and flat all rows(by splitting \n)
|
|
rows := append(table[1:3], strings.Split(table[3], "\n")...)
|
|
for _, row := range rows {
|
|
if row == "" {
|
|
continue
|
|
}
|
|
l.emit(itemTableRow)
|
|
rawCells := reTable.trim(row, "")
|
|
cells := reTable.split(rawCells, -1)
|
|
// Emit cells in the current row
|
|
for _, cell := range cells {
|
|
l.emit(itemTableCell, cell)
|
|
}
|
|
}
|
|
return lexAny
|
|
}
|