Jakob Borg 65aaa607ab Use Go 1.5 vendoring instead of Godeps
Change made by:

- running "gvt fetch" on each of the packages mentioned in
  Godeps/Godeps.json
- `rm -rf Godeps`
- tweaking the build scripts to not mention Godeps
- tweaking the build scripts to test `./lib/...`, `./cmd/...` explicitly
  (to avoid testing vendor)
- tweaking the build scripts to not juggle GOPATH for Godeps and instead
  set GO15VENDOREXPERIMENT.

This also results in some updated packages at the same time I bet.

Building with Go 1.3 and 1.4 still *works* but won't use our vendored
dependencies - the user needs to have the actual packages in their
GOPATH then, which they'll get with a normal "go get". Building with Go
1.6+ will get our vendored dependencies by default even when not using
our build script, which is nice.

By doing this we gain some freedom in that we can pick and choose
manually what to include in vendor, as it's not based on just dependency
analysis of our own code. This is also a risk as we might pick up
dependencies we are unaware of, as the build may work locally with those
packages present in GOPATH. On the other hand the build server will
detect this as it has no packages in it's GOPATH beyond what is included
in the repo.

Recommended tool to manage dependencies is github.com/FiloSottile/gvt.
2016-03-05 21:21:24 +01:00

816 lines
19 KiB
Go

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package coding implements low-level QR coding details.
package coding
import (
"fmt"
"strconv"
"strings"
"github.com/vitrun/qart/gf256"
)
// Field is the field for QR error correction.
var Field = gf256.NewField(0x11d, 2)
// A Version represents a QR version.
// The version specifies the size of the QR code:
// a QR code with version v has 4v+17 pixels on a side.
// Versions number from 1 to 40: the larger the version,
// the more information the code can store.
type Version int
const MinVersion = 1
const MaxVersion = 40
func (v Version) String() string {
return strconv.Itoa(int(v))
}
func (v Version) sizeClass() int {
if v <= 9 {
return 0
}
if v <= 26 {
return 1
}
return 2
}
// DataBytes returns the number of data bytes that can be
// stored in a QR code with the given version and level.
func (v Version) DataBytes(l Level) int {
vt := &vtab[v]
lev := &vt.level[l]
return vt.bytes - lev.nblock*lev.check
}
// Encoding implements a QR data encoding scheme.
// The implementations--Numeric, Alphanumeric, and String--specify
// the character set and the mapping from UTF-8 to code bits.
// The more restrictive the mode, the fewer code bits are needed.
type Encoding interface {
Check() error
Bits(v Version) int
Encode(b *Bits, v Version)
}
type Bits struct {
b []byte
nbit int
}
func (b *Bits) Reset() {
b.b = b.b[:0]
b.nbit = 0
}
func (b *Bits) Bits() int {
return b.nbit
}
func (b *Bits) Bytes() []byte {
if b.nbit%8 != 0 {
panic("fractional byte")
}
return b.b
}
func (b *Bits) Append(p []byte) {
if b.nbit%8 != 0 {
panic("fractional byte")
}
b.b = append(b.b, p...)
b.nbit += 8 * len(p)
}
func (b *Bits) Write(v uint, nbit int) {
for nbit > 0 {
n := nbit
if n > 8 {
n = 8
}
if b.nbit%8 == 0 {
b.b = append(b.b, 0)
} else {
m := -b.nbit & 7
if n > m {
n = m
}
}
b.nbit += n
sh := uint(nbit - n)
b.b[len(b.b)-1] |= uint8(v >> sh << uint(-b.nbit&7))
v -= v >> sh << sh
nbit -= n
}
}
// Num is the encoding for numeric data.
// The only valid characters are the decimal digits 0 through 9.
type Num string
func (s Num) String() string {
return fmt.Sprintf("Num(%#q)", string(s))
}
func (s Num) Check() error {
for _, c := range s {
if c < '0' || '9' < c {
return fmt.Errorf("non-numeric string %#q", string(s))
}
}
return nil
}
var numLen = [3]int{10, 12, 14}
func (s Num) Bits(v Version) int {
return 4 + numLen[v.sizeClass()] + (10*len(s)+2)/3
}
func (s Num) Encode(b *Bits, v Version) {
b.Write((uint)(1), 4)
b.Write(uint(len(s)), numLen[v.sizeClass()])
var i int
for i = 0; i+3 <= len(s); i += 3 {
w := uint(s[i]-'0')*100 + uint(s[i+1]-'0')*10 + uint(s[i+2]-'0')
b.Write(w, 10)
}
switch len(s) - i {
case 1:
w := uint(s[i] - '0')
b.Write(w, 4)
case 2:
w := uint(s[i]-'0')*10 + uint(s[i+1]-'0')
b.Write(w, 7)
}
}
// Alpha is the encoding for alphanumeric data.
// The valid characters are 0-9A-Z$%*+-./: and space.
type Alpha string
const alphabet = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:"
func (s Alpha) String() string {
return fmt.Sprintf("Alpha(%#q)", string(s))
}
func (s Alpha) Check() error {
for _, c := range s {
if strings.IndexRune(alphabet, c) < 0 {
return fmt.Errorf("non-alphanumeric string %#q", string(s))
}
}
return nil
}
var alphaLen = [3]int{9, 11, 13}
func (s Alpha) Bits(v Version) int {
return 4 + alphaLen[v.sizeClass()] + (11*len(s)+1)/2
}
func (s Alpha) Encode(b *Bits, v Version) {
b.Write((uint)(2), 4)
b.Write(uint(len(s)), alphaLen[v.sizeClass()])
var i int
for i = 0; i+2 <= len(s); i += 2 {
w := uint(strings.IndexRune(alphabet, rune(s[i])))*45 +
uint(strings.IndexRune(alphabet, rune(s[i+1])))
b.Write(w, 11)
}
if i < len(s) {
w := uint(strings.IndexRune(alphabet, rune(s[i])))
b.Write(w, 6)
}
}
// String is the encoding for 8-bit data. All bytes are valid.
type String string
func (s String) String() string {
return fmt.Sprintf("String(%#q)", string(s))
}
func (s String) Check() error {
return nil
}
var stringLen = [3]int{8, 16, 16}
func (s String) Bits(v Version) int {
return 4 + stringLen[v.sizeClass()] + 8*len(s)
}
func (s String) Encode(b *Bits, v Version) {
b.Write((uint)(4), 4)
b.Write(uint(len(s)), stringLen[v.sizeClass()])
for i := 0; i < len(s); i++ {
b.Write(uint(s[i]), 8)
}
}
// A Pixel describes a single pixel in a QR code.
type Pixel uint32
const (
Black Pixel = 1 << iota
Invert
)
func (p Pixel) Offset() uint {
return uint(p >> 6)
}
func OffsetPixel(o uint) Pixel {
return Pixel(o << 6)
}
func (r PixelRole) Pixel() Pixel {
return Pixel(r << 2)
}
func (p Pixel) Role() PixelRole {
return PixelRole(p>>2) & 15
}
func (p Pixel) String() string {
s := p.Role().String()
if p&Black != 0 {
s += "+black"
}
if p&Invert != 0 {
s += "+invert"
}
s += "+" + strconv.FormatUint(uint64(p.Offset()), 10)
return s
}
// A PixelRole describes the role of a QR pixel.
type PixelRole uint32
const (
_ PixelRole = iota
Position // position squares (large)
Alignment // alignment squares (small)
Timing // timing strip between position squares
Format // format metadata
PVersion // version pattern
Unused // unused pixel
Data // data bit
Check // error correction check bit
Extra
)
var roles = []string{
"",
"position",
"alignment",
"timing",
"format",
"pversion",
"unused",
"data",
"check",
"extra",
}
func (r PixelRole) String() string {
if Position <= r && r <= Check {
return roles[r]
}
return strconv.Itoa(int(r))
}
// A Level represents a QR error correction level.
// From least to most tolerant of errors, they are L, M, Q, H.
type Level int
const (
L Level = iota
M
Q
H
)
func (l Level) String() string {
if L <= l && l <= H {
return "LMQH"[l : l+1]
}
return strconv.Itoa(int(l))
}
// A Code is a square pixel grid.
type Code struct {
Bitmap []byte // 1 is black, 0 is white
Size int // number of pixels on a side
Stride int // number of bytes per row
}
func (c *Code) Black(x, y int) bool {
return 0 <= x && x < c.Size && 0 <= y && y < c.Size &&
c.Bitmap[y*c.Stride+x/8]&(1<<uint(7-x&7)) != 0
}
// A Mask describes a mask that is applied to the QR
// code to avoid QR artifacts being interpreted as
// alignment and timing patterns (such as the squares
// in the corners). Valid masks are integers from 0 to 7.
type Mask int
// http://www.swetake.com/qr/qr5_en.html
var mfunc = []func(int, int) bool{
func(i, j int) bool { return (i+j)%2 == 0 },
func(i, _ int) bool { return i%2 == 0 },
func(_, j int) bool { return j%3 == 0 },
func(i, j int) bool { return (i+j)%3 == 0 },
func(i, j int) bool { return (i/2+j/3)%2 == 0 },
func(i, j int) bool { return i*j%2+i*j%3 == 0 },
func(i, j int) bool { return (i*j%2+i*j%3)%2 == 0 },
func(i, j int) bool { return (i*j%3+(i+j)%2)%2 == 0 },
}
func (m Mask) Invert(y, x int) bool {
if m < 0 {
return false
}
return mfunc[m](y, x)
}
// A Plan describes how to construct a QR code
// with a specific version, level, and mask.
type Plan struct {
Version Version
Level Level
Mask Mask
DataBytes int // number of data bytes
CheckBytes int // number of error correcting (checksum) bytes
Blocks int // number of data blocks
Pixel [][]Pixel // pixel map
}
// NewPlan returns a Plan for a QR code with the given
// version, level, and mask.
func NewPlan(version Version, level Level, mask Mask) (*Plan, error) {
p, err := vplan(version)
if err != nil {
return nil, err
}
if err := fplan(level, mask, p); err != nil {
return nil, err
}
if err := lplan(version, level, p); err != nil {
return nil, err
}
if err := mplan(mask, p); err != nil {
return nil, err
}
return p, nil
}
func (b *Bits) Pad(n int) {
if n < 0 {
panic("qr: invalid pad size")
}
if n <= 4 {
b.Write((uint)(0), n)
} else {
b.Write((uint)(0), 4)
n -= 4
n -= -b.Bits() & 7
b.Write((uint)(0), -b.Bits()&7)
pad := n / 8
for i := 0; i < pad; i += 2 {
b.Write((uint)(0xec), 8)
if i+1 >= pad {
break
}
b.Write((uint)(0x11), 8)
}
}
}
func (b *Bits) AddCheckBytes(v Version, l Level) {
nd := v.DataBytes(l)
if b.nbit < nd*8 {
b.Pad(nd*8 - b.nbit)
}
if b.nbit != nd*8 {
panic("qr: too much data")
}
dat := b.Bytes()
vt := &vtab[v]
lev := &vt.level[l]
db := nd / lev.nblock
extra := nd % lev.nblock
chk := make([]byte, lev.check)
rs := gf256.NewRSEncoder(Field, lev.check)
for i := 0; i < lev.nblock; i++ {
if i == lev.nblock-extra {
db++
}
rs.ECC(dat[:db], chk)
b.Append(chk)
dat = dat[db:]
}
if len(b.Bytes()) != vt.bytes {
panic("qr: internal error")
}
}
func (p *Plan) Encode(text ...Encoding) (*Code, error) {
var b Bits
for _, t := range text {
if err := t.Check(); err != nil {
return nil, err
}
t.Encode(&b, p.Version)
}
if b.Bits() > p.DataBytes*8 {
return nil, fmt.Errorf("cannot encode %d bits into %d-bit code", b.Bits(), p.DataBytes*8)
}
b.AddCheckBytes(p.Version, p.Level)
bytes := b.Bytes()
// Now we have the checksum bytes and the data bytes.
// Construct the actual code.
c := &Code{Size: len(p.Pixel), Stride: (len(p.Pixel) + 7) &^ 7}
c.Bitmap = make([]byte, c.Stride*c.Size)
crow := c.Bitmap
for _, row := range p.Pixel {
for x, pix := range row {
switch pix.Role() {
case Data, Check:
o := pix.Offset()
if bytes[o/8]&(1<<uint(7-o&7)) != 0 {
pix ^= Black
}
}
if pix&Black != 0 {
crow[x/8] |= 1 << uint(7-x&7)
}
}
crow = crow[c.Stride:]
}
return c, nil
}
// A version describes metadata associated with a version.
type version struct {
apos int
astride int
bytes int
pattern int
level [4]level
}
type level struct {
nblock int
check int
}
var vtab = []version{
{},
{100, 100, 26, 0x0, [4]level{{1, 7}, {1, 10}, {1, 13}, {1, 17}}}, // 1
{16, 100, 44, 0x0, [4]level{{1, 10}, {1, 16}, {1, 22}, {1, 28}}}, // 2
{20, 100, 70, 0x0, [4]level{{1, 15}, {1, 26}, {2, 18}, {2, 22}}}, // 3
{24, 100, 100, 0x0, [4]level{{1, 20}, {2, 18}, {2, 26}, {4, 16}}}, // 4
{28, 100, 134, 0x0, [4]level{{1, 26}, {2, 24}, {4, 18}, {4, 22}}}, // 5
{32, 100, 172, 0x0, [4]level{{2, 18}, {4, 16}, {4, 24}, {4, 28}}}, // 6
{20, 16, 196, 0x7c94, [4]level{{2, 20}, {4, 18}, {6, 18}, {5, 26}}}, // 7
{22, 18, 242, 0x85bc, [4]level{{2, 24}, {4, 22}, {6, 22}, {6, 26}}}, // 8
{24, 20, 292, 0x9a99, [4]level{{2, 30}, {5, 22}, {8, 20}, {8, 24}}}, // 9
{26, 22, 346, 0xa4d3, [4]level{{4, 18}, {5, 26}, {8, 24}, {8, 28}}}, // 10
{28, 24, 404, 0xbbf6, [4]level{{4, 20}, {5, 30}, {8, 28}, {11, 24}}}, // 11
{30, 26, 466, 0xc762, [4]level{{4, 24}, {8, 22}, {10, 26}, {11, 28}}}, // 12
{32, 28, 532, 0xd847, [4]level{{4, 26}, {9, 22}, {12, 24}, {16, 22}}}, // 13
{24, 20, 581, 0xe60d, [4]level{{4, 30}, {9, 24}, {16, 20}, {16, 24}}}, // 14
{24, 22, 655, 0xf928, [4]level{{6, 22}, {10, 24}, {12, 30}, {18, 24}}}, // 15
{24, 24, 733, 0x10b78, [4]level{{6, 24}, {10, 28}, {17, 24}, {16, 30}}}, // 16
{28, 24, 815, 0x1145d, [4]level{{6, 28}, {11, 28}, {16, 28}, {19, 28}}}, // 17
{28, 26, 901, 0x12a17, [4]level{{6, 30}, {13, 26}, {18, 28}, {21, 28}}}, // 18
{28, 28, 991, 0x13532, [4]level{{7, 28}, {14, 26}, {21, 26}, {25, 26}}}, // 19
{32, 28, 1085, 0x149a6, [4]level{{8, 28}, {16, 26}, {20, 30}, {25, 28}}}, // 20
{26, 22, 1156, 0x15683, [4]level{{8, 28}, {17, 26}, {23, 28}, {25, 30}}}, // 21
{24, 24, 1258, 0x168c9, [4]level{{9, 28}, {17, 28}, {23, 30}, {34, 24}}}, // 22
{28, 24, 1364, 0x177ec, [4]level{{9, 30}, {18, 28}, {25, 30}, {30, 30}}}, // 23
{26, 26, 1474, 0x18ec4, [4]level{{10, 30}, {20, 28}, {27, 30}, {32, 30}}}, // 24
{30, 26, 1588, 0x191e1, [4]level{{12, 26}, {21, 28}, {29, 30}, {35, 30}}}, // 25
{28, 28, 1706, 0x1afab, [4]level{{12, 28}, {23, 28}, {34, 28}, {37, 30}}}, // 26
{32, 28, 1828, 0x1b08e, [4]level{{12, 30}, {25, 28}, {34, 30}, {40, 30}}}, // 27
{24, 24, 1921, 0x1cc1a, [4]level{{13, 30}, {26, 28}, {35, 30}, {42, 30}}}, // 28
{28, 24, 2051, 0x1d33f, [4]level{{14, 30}, {28, 28}, {38, 30}, {45, 30}}}, // 29
{24, 26, 2185, 0x1ed75, [4]level{{15, 30}, {29, 28}, {40, 30}, {48, 30}}}, // 30
{28, 26, 2323, 0x1f250, [4]level{{16, 30}, {31, 28}, {43, 30}, {51, 30}}}, // 31
{32, 26, 2465, 0x209d5, [4]level{{17, 30}, {33, 28}, {45, 30}, {54, 30}}}, // 32
{28, 28, 2611, 0x216f0, [4]level{{18, 30}, {35, 28}, {48, 30}, {57, 30}}}, // 33
{32, 28, 2761, 0x228ba, [4]level{{19, 30}, {37, 28}, {51, 30}, {60, 30}}}, // 34
{28, 24, 2876, 0x2379f, [4]level{{19, 30}, {38, 28}, {53, 30}, {63, 30}}}, // 35
{22, 26, 3034, 0x24b0b, [4]level{{20, 30}, {40, 28}, {56, 30}, {66, 30}}}, // 36
{26, 26, 3196, 0x2542e, [4]level{{21, 30}, {43, 28}, {59, 30}, {70, 30}}}, // 37
{30, 26, 3362, 0x26a64, [4]level{{22, 30}, {45, 28}, {62, 30}, {74, 30}}}, // 38
{24, 28, 3532, 0x27541, [4]level{{24, 30}, {47, 28}, {65, 30}, {77, 30}}}, // 39
{28, 28, 3706, 0x28c69, [4]level{{25, 30}, {49, 28}, {68, 30}, {81, 30}}}, // 40
}
func grid(siz int) [][]Pixel {
m := make([][]Pixel, siz)
pix := make([]Pixel, siz*siz)
for i := range m {
m[i], pix = pix[:siz], pix[siz:]
}
return m
}
// vplan creates a Plan for the given version.
func vplan(v Version) (*Plan, error) {
p := &Plan{Version: v}
if v < 1 || v > 40 {
return nil, fmt.Errorf("invalid QR version %d", int(v))
}
siz := 17 + int(v)*4
m := grid(siz)
p.Pixel = m
// Timing markers (overwritten by boxes).
const ti = 6 // timing is in row/column 6 (counting from 0)
for i := range m {
p := Timing.Pixel()
if i&1 == 0 {
p |= Black
}
m[i][ti] = p
m[ti][i] = p
}
// Position boxes.
posBox(m, 0, 0)
posBox(m, siz-7, 0)
posBox(m, 0, siz-7)
// Alignment boxes.
info := &vtab[v]
for x := 4; x+5 < siz; {
for y := 4; y+5 < siz; {
// don't overwrite timing markers
if (x < 7 && y < 7) || (x < 7 && y+5 >= siz-7) || (x+5 >= siz-7 && y < 7) {
} else {
alignBox(m, x, y)
}
if y == 4 {
y = info.apos
} else {
y += info.astride
}
}
if x == 4 {
x = info.apos
} else {
x += info.astride
}
}
// Version pattern.
pat := vtab[v].pattern
if pat != 0 {
v := pat
for x := 0; x < 6; x++ {
for y := 0; y < 3; y++ {
p := PVersion.Pixel()
if v&1 != 0 {
p |= Black
}
m[siz-11+y][x] = p
m[x][siz-11+y] = p
v >>= 1
}
}
}
// One lonely black pixel
m[siz-8][8] = Unused.Pixel() | Black
return p, nil
}
// fplan adds the format pixels
func fplan(l Level, m Mask, p *Plan) error {
// Format pixels.
fb := uint32(l^1) << 13 // level: L=01, M=00, Q=11, H=10
fb |= uint32(m) << 10 // mask
const formatPoly = 0x537
rem := fb
for i := 14; i >= 10; i-- {
if rem&(1<<uint(i)) != 0 {
rem ^= formatPoly << uint(i-10)
}
}
fb |= rem
invert := uint32(0x5412)
siz := len(p.Pixel)
for i := uint(0); i < 15; i++ {
pix := Format.Pixel() + OffsetPixel(i)
if (fb>>i)&1 == 1 {
pix |= Black
}
if (invert>>i)&1 == 1 {
pix ^= Invert | Black
}
// top left
switch {
case i < 6:
p.Pixel[i][8] = pix
case i < 8:
p.Pixel[i+1][8] = pix
case i < 9:
p.Pixel[8][7] = pix
default:
p.Pixel[8][14-i] = pix
}
// bottom right
switch {
case i < 8:
p.Pixel[8][siz-1-int(i)] = pix
default:
p.Pixel[siz-1-int(14-i)][8] = pix
}
}
return nil
}
// lplan edits a version-only Plan to add information
// about the error correction levels.
func lplan(v Version, l Level, p *Plan) error {
p.Level = l
nblock := vtab[v].level[l].nblock
ne := vtab[v].level[l].check
nde := (vtab[v].bytes - ne*nblock) / nblock
extra := (vtab[v].bytes - ne*nblock) % nblock
dataBits := (nde*nblock + extra) * 8
checkBits := ne * nblock * 8
p.DataBytes = vtab[v].bytes - ne*nblock
p.CheckBytes = ne * nblock
p.Blocks = nblock
// Make data + checksum pixels.
data := make([]Pixel, dataBits)
for i := range data {
data[i] = Data.Pixel() | OffsetPixel(uint(i))
}
check := make([]Pixel, checkBits)
for i := range check {
check[i] = Check.Pixel() | OffsetPixel(uint(i+dataBits))
}
// Split into blocks.
dataList := make([][]Pixel, nblock)
checkList := make([][]Pixel, nblock)
for i := 0; i < nblock; i++ {
// The last few blocks have an extra data byte (8 pixels).
nd := nde
if i >= nblock-extra {
nd++
}
dataList[i], data = data[0:nd*8], data[nd*8:]
checkList[i], check = check[0:ne*8], check[ne*8:]
}
if len(data) != 0 || len(check) != 0 {
panic("data/check math")
}
// Build up bit sequence, taking first byte of each block,
// then second byte, and so on. Then checksums.
bits := make([]Pixel, dataBits+checkBits)
dst := bits
for i := 0; i < nde+1; i++ {
for _, b := range dataList {
if i*8 < len(b) {
copy(dst, b[i*8:(i+1)*8])
dst = dst[8:]
}
}
}
for i := 0; i < ne; i++ {
for _, b := range checkList {
if i*8 < len(b) {
copy(dst, b[i*8:(i+1)*8])
dst = dst[8:]
}
}
}
if len(dst) != 0 {
panic("dst math")
}
// Sweep up pair of columns,
// then down, assigning to right then left pixel.
// Repeat.
// See Figure 2 of http://www.pclviewer.com/rs2/qrtopology.htm
siz := len(p.Pixel)
rem := make([]Pixel, 7)
for i := range rem {
rem[i] = Extra.Pixel()
}
src := append(bits, rem...)
for x := siz; x > 0; {
for y := siz - 1; y >= 0; y-- {
if p.Pixel[y][x-1].Role() == 0 {
p.Pixel[y][x-1], src = src[0], src[1:]
}
if p.Pixel[y][x-2].Role() == 0 {
p.Pixel[y][x-2], src = src[0], src[1:]
}
}
x -= 2
if x == 7 { // vertical timing strip
x--
}
for y := 0; y < siz; y++ {
if p.Pixel[y][x-1].Role() == 0 {
p.Pixel[y][x-1], src = src[0], src[1:]
}
if p.Pixel[y][x-2].Role() == 0 {
p.Pixel[y][x-2], src = src[0], src[1:]
}
}
x -= 2
}
return nil
}
// mplan edits a version+level-only Plan to add the mask.
func mplan(m Mask, p *Plan) error {
p.Mask = m
for y, row := range p.Pixel {
for x, pix := range row {
if r := pix.Role(); (r == Data || r == Check || r == Extra) && p.Mask.Invert(y, x) {
row[x] ^= Black | Invert
}
}
}
return nil
}
// posBox draws a position (large) box at upper left x, y.
func posBox(m [][]Pixel, x, y int) {
pos := Position.Pixel()
// box
for dy := 0; dy < 7; dy++ {
for dx := 0; dx < 7; dx++ {
p := pos
if dx == 0 || dx == 6 || dy == 0 || dy == 6 || 2 <= dx && dx <= 4 && 2 <= dy && dy <= 4 {
p |= Black
}
m[y+dy][x+dx] = p
}
}
// white border
for dy := -1; dy < 8; dy++ {
if 0 <= y+dy && y+dy < len(m) {
if x > 0 {
m[y+dy][x-1] = pos
}
if x+7 < len(m) {
m[y+dy][x+7] = pos
}
}
}
for dx := -1; dx < 8; dx++ {
if 0 <= x+dx && x+dx < len(m) {
if y > 0 {
m[y-1][x+dx] = pos
}
if y+7 < len(m) {
m[y+7][x+dx] = pos
}
}
}
}
// alignBox draw an alignment (small) box at upper left x, y.
func alignBox(m [][]Pixel, x, y int) {
// box
align := Alignment.Pixel()
for dy := 0; dy < 5; dy++ {
for dx := 0; dx < 5; dx++ {
p := align
if dx == 0 || dx == 4 || dy == 0 || dy == 4 || dx == 2 && dy == 2 {
p |= Black
}
m[y+dy][x+dx] = p
}
}
}