mirror of
https://github.com/octoleo/syncthing.git
synced 2025-01-26 16:38:25 +00:00
298 lines
7.3 KiB
Go
298 lines
7.3 KiB
Go
// Copyright (c) 2014 The mersenne Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
/*
|
|
Package mersenne collects utilities related to Mersenne numbers[1] and/or some
|
|
of their properties.
|
|
|
|
Exponent
|
|
|
|
In this documentation the term 'exponent' refers to 'n' of a Mersenne number Mn
|
|
equal to 2^n-1. This package supports only uint32 sized exponents. New()
|
|
currently supports exponents only up to math.MaxInt32 (31 bits, up to 256 MB
|
|
required to represent such Mn in memory as a big.Int).
|
|
|
|
Links
|
|
|
|
Referenced from above:
|
|
[1] http://en.wikipedia.org/wiki/Mersenne_number
|
|
*/
|
|
package mersenne
|
|
|
|
import (
|
|
"math"
|
|
"math/big"
|
|
|
|
"github.com/cznic/mathutil"
|
|
"github.com/remyoudompheng/bigfft"
|
|
)
|
|
|
|
var (
|
|
_0 = big.NewInt(0)
|
|
_1 = big.NewInt(1)
|
|
_2 = big.NewInt(2)
|
|
)
|
|
|
|
// Knowns list the exponent of currently (March 2012) known Mersenne primes
|
|
// exponents in order. See also: http://oeis.org/A000043 for a partial list.
|
|
var Knowns = []uint32{
|
|
2, // #1
|
|
3, // #2
|
|
5, // #3
|
|
7, // #4
|
|
13, // #5
|
|
17, // #6
|
|
19, // #7
|
|
31, // #8
|
|
61, // #9
|
|
89, // #10
|
|
|
|
107, // #11
|
|
127, // #12
|
|
521, // #13
|
|
607, // #14
|
|
1279, // #15
|
|
2203, // #16
|
|
2281, // #17
|
|
3217, // #18
|
|
4253, // #19
|
|
4423, // #20
|
|
|
|
9689, // #21
|
|
9941, // #22
|
|
11213, // #23
|
|
19937, // #24
|
|
21701, // #25
|
|
23209, // #26
|
|
44497, // #27
|
|
86243, // #28
|
|
110503, // #29
|
|
132049, // #30
|
|
|
|
216091, // #31
|
|
756839, // #32
|
|
859433, // #33
|
|
1257787, // #34
|
|
1398269, // #35
|
|
2976221, // #36
|
|
3021377, // #37
|
|
6972593, // #38
|
|
13466917, // #39
|
|
20996011, // #40
|
|
|
|
24036583, // #41
|
|
25964951, // #42
|
|
30402457, // #43
|
|
32582657, // #44
|
|
37156667, // #45
|
|
42643801, // #46
|
|
43112609, // #47
|
|
57885161, // #48
|
|
74207281, // #49
|
|
}
|
|
|
|
// Known maps the exponent of known Mersenne primes its ordinal number/rank.
|
|
// Ranks > 41 are currently provisional.
|
|
var Known map[uint32]int
|
|
|
|
func init() {
|
|
Known = map[uint32]int{}
|
|
for i, v := range Knowns {
|
|
Known[v] = i + 1
|
|
}
|
|
}
|
|
|
|
// New returns Mn == 2^n-1 for n <= math.MaxInt32 or nil otherwise.
|
|
func New(n uint32) (m *big.Int) {
|
|
if n > math.MaxInt32 {
|
|
return
|
|
}
|
|
|
|
m = big.NewInt(0)
|
|
return m.Sub(m.SetBit(m, int(n), 1), _1)
|
|
}
|
|
|
|
// HasFactorUint32 returns true if d | Mn. Typical run time for a 32 bit factor
|
|
// and a 32 bit exponent is < 1 µs.
|
|
func HasFactorUint32(d, n uint32) bool {
|
|
return d == 1 || d&1 != 0 && mathutil.ModPowUint32(2, n, d) == 1
|
|
}
|
|
|
|
// HasFactorUint64 returns true if d | Mn. Typical run time for a 64 bit factor
|
|
// and a 32 bit exponent is < 30 µs.
|
|
func HasFactorUint64(d uint64, n uint32) bool {
|
|
return d == 1 || d&1 != 0 && mathutil.ModPowUint64(2, uint64(n), d) == 1
|
|
}
|
|
|
|
// HasFactorBigInt returns true if d | Mn, d > 0. Typical run time for a 128
|
|
// bit factor and a 32 bit exponent is < 75 µs.
|
|
func HasFactorBigInt(d *big.Int, n uint32) bool {
|
|
return d.Cmp(_1) == 0 || d.Sign() > 0 && d.Bit(0) == 1 &&
|
|
mathutil.ModPowBigInt(_2, big.NewInt(int64(n)), d).Cmp(_1) == 0
|
|
}
|
|
|
|
// HasFactorBigInt2 returns true if d | Mn, d > 0
|
|
func HasFactorBigInt2(d, n *big.Int) bool {
|
|
return d.Cmp(_1) == 0 || d.Sign() > 0 && d.Bit(0) == 1 &&
|
|
mathutil.ModPowBigInt(_2, n, d).Cmp(_1) == 0
|
|
}
|
|
|
|
/*
|
|
FromFactorBigInt returns n such that d | Mn if n <= max and d is odd. In other
|
|
cases zero is returned.
|
|
|
|
It is conjectured that every odd d ∊ N divides infinitely many Mersenne numbers.
|
|
The returned n should be the exponent of smallest such Mn.
|
|
|
|
NOTE: The computation of n from a given d performs roughly in O(n). It is
|
|
thus highly recomended to use the 'max' argument to limit the "searched"
|
|
exponent upper bound as appropriate. Otherwise the computation can take a long
|
|
time as a large factor can be a divisor of a Mn with exponent above the uint32
|
|
limits.
|
|
|
|
The FromFactorBigInt function is a modification of the original Will
|
|
Edgington's "reverse method", discussed here:
|
|
http://tech.groups.yahoo.com/group/primenumbers/message/15061
|
|
*/
|
|
func FromFactorBigInt(d *big.Int, max uint32) (n uint32) {
|
|
if d.Bit(0) == 0 {
|
|
return
|
|
}
|
|
|
|
var m big.Int
|
|
for n < max {
|
|
m.Add(&m, d)
|
|
i := 0
|
|
for ; m.Bit(i) == 1; i++ {
|
|
if n == math.MaxUint32 {
|
|
return 0
|
|
}
|
|
|
|
n++
|
|
}
|
|
m.Rsh(&m, uint(i))
|
|
if m.Sign() == 0 {
|
|
if n > max {
|
|
n = 0
|
|
}
|
|
return
|
|
}
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// Mod sets mod to n % Mexp and returns mod. It panics for exp == 0 || exp >=
|
|
// math.MaxInt32 || n < 0.
|
|
func Mod(mod, n *big.Int, exp uint32) *big.Int {
|
|
if exp == 0 || exp >= math.MaxInt32 || n.Sign() < 0 {
|
|
panic(0)
|
|
}
|
|
|
|
m := New(exp)
|
|
mod.Set(n)
|
|
var x big.Int
|
|
for mod.BitLen() > int(exp) {
|
|
x.Set(mod)
|
|
x.Rsh(&x, uint(exp))
|
|
mod.And(mod, m)
|
|
mod.Add(mod, &x)
|
|
}
|
|
if mod.BitLen() == int(exp) && mod.Cmp(m) == 0 {
|
|
mod.SetInt64(0)
|
|
}
|
|
return mod
|
|
}
|
|
|
|
// ModPow2 returns x such that 2^Me % Mm == 2^x. It panics for m < 2. Typical
|
|
// run time is < 1 µs. Use instead of ModPow(2, e, m) wherever possible.
|
|
func ModPow2(e, m uint32) (x uint32) {
|
|
/*
|
|
m < 2 -> panic
|
|
e == 0 -> x == 0
|
|
e == 1 -> x == 1
|
|
|
|
2^M1 % M2 == 2^1 % 3 == 2^1 10 // 2^1, 3, 5, 7 ... +2k
|
|
2^M1 % M3 == 2^1 % 7 == 2^1 010 // 2^1, 4, 7, ... +3k
|
|
2^M1 % M4 == 2^1 % 15 == 2^1 0010 // 2^1, 5, 9, 13... +4k
|
|
2^M1 % M5 == 2^1 % 31 == 2^1 00010 // 2^1, 6, 11, 16... +5k
|
|
|
|
2^M2 % M2 == 2^3 % 3 == 2^1 10.. // 2^3, 5, 7, 9, 11, ... +2k
|
|
2^M2 % M3 == 2^3 % 7 == 2^0 001... // 2^3, 6, 9, 12, 15, ... +3k
|
|
2^M2 % M4 == 2^3 % 15 == 2^3 1000 // 2^3, 7, 11, 15, 19, ... +4k
|
|
2^M2 % M5 == 2^3 % 31 == 2^3 01000 // 2^3, 8, 13, 18, 23, ... +5k
|
|
|
|
2^M3 % M2 == 2^7 % 3 == 2^1 10..--.. // 2^3, 5, 7... +2k
|
|
2^M3 % M3 == 2^7 % 7 == 2^1 010...--- // 2^1, 4, 7... +3k
|
|
2^M3 % M4 == 2^7 % 15 == 2^3 1000.... // +4k
|
|
2^M3 % M5 == 2^7 % 31 == 2^2 00100..... // +5k
|
|
2^M3 % M6 == 2^7 % 63 == 2^1 000010...... // +6k
|
|
2^M3 % M7 == 2^7 % 127 == 2^0 0000001.......
|
|
2^M3 % M8 == 2^7 % 255 == 2^7 10000000
|
|
2^M3 % M9 == 2^7 % 511 == 2^7 010000000
|
|
|
|
2^M4 % M2 == 2^15 % 3 == 2^1 10..--..--..--..
|
|
2^M4 % M3 == 2^15 % 7 == 2^0 1...---...---...
|
|
2^M4 % M4 == 2^15 % 15 == 2^3 1000....----....
|
|
2^M4 % M5 == 2^15 % 31 == 2^0 1.....-----.....
|
|
2^M4 % M6 == 2^15 % 63 == 2^3 1000......------
|
|
2^M4 % M7 == 2^15 % 127 == 2^1 10.......-------
|
|
2^M4 % M8 == 2^15 % 255 == 2^7 10000000........
|
|
2^M4 % M9 == 2^15 % 511 == 2^6 1000000.........
|
|
*/
|
|
switch {
|
|
case m < 2:
|
|
panic(0)
|
|
case e < 2:
|
|
return e
|
|
}
|
|
|
|
if x = mathutil.ModPowUint32(2, e, m); x == 0 {
|
|
return m - 1
|
|
}
|
|
|
|
return x - 1
|
|
}
|
|
|
|
// ModPow returns b^Me % Mm. Run time grows quickly with 'e' and/or 'm' when b
|
|
// != 2 (then ModPow2 is used).
|
|
func ModPow(b, e, m uint32) (r *big.Int) {
|
|
if m == 1 {
|
|
return big.NewInt(0)
|
|
}
|
|
|
|
if b == 2 {
|
|
x := ModPow2(e, m)
|
|
r = big.NewInt(0)
|
|
r.SetBit(r, int(x), 1)
|
|
return
|
|
}
|
|
|
|
bb := big.NewInt(int64(b))
|
|
r = big.NewInt(1)
|
|
for ; e != 0; e-- {
|
|
r = bigfft.Mul(r, bb)
|
|
Mod(r, r, m)
|
|
bb = bigfft.Mul(bb, bb)
|
|
Mod(bb, bb, m)
|
|
}
|
|
return
|
|
}
|
|
|
|
// ProbablyPrime returns true if Mn is prime or is a pseudoprime to base a.
|
|
// Note: Every Mp, prime p, is a prime or is a pseudoprime to base 2, actually
|
|
// to every base 2^i, i ∊ [1, p). In contrast - it is conjectured (w/o any
|
|
// known counterexamples) that no composite Mp, prime p, is a pseudoprime to
|
|
// base 3.
|
|
func ProbablyPrime(n, a uint32) bool {
|
|
//TODO +test, +bench
|
|
if a == 2 {
|
|
return ModPow2(n-1, n) == 0
|
|
}
|
|
|
|
nMinus1 := New(n)
|
|
nMinus1.Sub(nMinus1, _1)
|
|
x := ModPow(a, n-1, n)
|
|
return x.Cmp(_1) == 0 || x.Cmp(nMinus1) == 0
|
|
}
|