Adding a header row automatically added the widths to the table and returned the row, but adding a file’s row didn’t add the widths. Now they’re consistent.
By having the widths be in a separate type, we can separate the two out later, rather than having one refer to the other.
This commit ties a table’s Environment to the fact that it contains columns.
Previously, the Details view would get its Environment, and then use those fields to actually display the details in the table: except for the case where we’re only displaying a tree, when it would just be ignored, instead.
This was caused by the “no columns” case using a Vec of no Columns behind the scenes, rather than disabling the table entirely; much like how a tap isn’t a zero-length swipe, the code should have been updated to reflect this. Now, the Environment is only created if it’s going to be used.
Also, fix a double-mutex-lock: the mutable Table had to be accessed under a lock, but the table contained a UsersCache, which *also* had to be accessed under a lock. This was changed so that the table is only updated *after* the threads have all been joined, so there’s no need for any lock at all. May fix#141, but not sure.
This commit extracts the common table element from the details and grid_details modules, and makes it its own reusable thing.
- A Table no longer holds the values it’s rendering; it just holds a continually-updated version of the maximum widths for each column. This means that all of the resulting values that turn into Rows — which here are either files, or file eggs — need to be stored *somewhere*, and that somewhere is a secondary vector that gets passed around and modified alongside the Table.
- Likewise, all the mutable methods that were on Table that added a Row now *return* the row that would have been added, hoping that the row does get stored somewhere. (It does, don’t worry.)
- Because rendering with mock users is tested in the user-field-rendering module, we don’t need to bother threading different types of U through the Environment, so now it’s just been specialised to UsersCache.
- Accidentally speed up printing a table by not buffering its entire output first when not necessary.
This isn’t perfect, as a file’s type isn’t cached, so it gets recomputed for every comparison in the sort! We can’t go off the file’s `st_mode` flag because it’s not guaranteed to be in any order between systems.
The arguments passed to File’s constructor were different from the field names used — these might as well both be the same.
Also, move ext and filename to be File methods to save an import, and add tests.
Also also, by passing a PathBuf in to the constructor directly, we can save one (possibly two) instance/s where we pass in a reference to something we were going to lose ownership of anyway, only to have it basically cloned.
There’s a problem with the tree view where it’ll still recurse through `.` and `..`. But if you were using tree view, would you even need to see them? They’d be in the tree already!
There was a problem when displaying . and .. in directory listings: their names would normalise to actual names! So instead of literally seeing `.`, you’d see the current directory’s name, inserted in sort order into the list of results. Obviously this is not what we want.
In unrelated news, putting `.` and `..` into the list of paths read from a directory just takes up more heap space for something that’s basically constant.
We can solve both these problems at once by moving the DotFilter to the files iterator in Dir, rather than at the Dir’s creation. Having the iterator know whether it should display `.` and `..` means it can emit those files first, and because it knows what those files really represent, it can override their file names to actually be those sequences of dots.
This is not a perfect solution: the main casualty is that a File can now be constructed with a name, some metadata, both, or neither. This is currently handled with a bunch of Options, and returns IOResult even without doing any IO operations.
But at least all the tests pass!
I originally thought that the entries . and .. were in *every* directory entry, and exa was already doing something to filter it out. And then... I could find no such code! Turns out, if we want those entries present, we have to insert them ourselves.
This was harder than expected. Because the file filter doesn’t have access to the parent directory path, it can’t “filter” the files vector by inserting the files at the beginning.
Instead, we do it at the iterator level. A directory can be scanned in three different ways depending on what sort of dotfiles, if any, are wanted. At this point, we already have access to the parent directory’s path, so we can just insert them manually. The enum got moved to the dir module because it’s used most there.
If a function returns one of several enum variants, but we’re only interested in one, then just return its contents and have it apply the Mode “wrapper” later.
These two fields were originally needed to determine how to recurse when using tree view.
However, as there was no distinction between the “options parsed from the command-line” Details and the “values needed to render a table” Details, these had to be threaded through the options parser as a special-case to end up in the right struct.
No more! Because there are separate structs for options and rendering, we can just add them in later.
Instead of having render methods on the types that are now called Options, create new Render structs (one per view) and execute them. This means that it’s easier to extract methods from them — some of them are pretty long.
Also, remove the GridDetails struct, which got consumed by Mode (mostly)
By introducing another indirection between the structs that command-line options get parsed into and the structs that get rendered, it should be easier to refactor that horrible function in view.rs.
Now that colours don’t depend on a previously-calculated “should we be using colours” boolean anymore, their entire deduce function can be done separately to the mode’s one.
exa assumed that the COLUMNS environment variable being present always meant that the output was to a terminal, so it should use colours. But because this variable can be overridden, colours were being incorrectly set!
The ‘fix’ is to stop trying to be clever while only calculating the terminal width once, and instead just stick it in a lazy_static so it’s usable everywhere.
All four view types — lines, grid, details, and grid-details — held their own colours and classify flags.
This didn’t make any sense for the grid-details view, which had to pick which one to use: the values were in there twice.
It also gave the Table in the details view access to more information than it really should have had.
Now, those two flags are returned separately from the view “mode”, which is the new term for one of those four things.
Unlike the others, setuid/setgid/sticky get merged with user/group/other execute in the rendered Permissions cell. So there had to be a bit of code change done to make sure that none of the bits clashed.
The problem here was that we were using `metadata.permissions().mode()`, which is capped at 0o777, rather than `metadata.mode()`, which exposes every bit. With this change, we can access the higher-order permission bits, and put them in the Permissions struct.
On the plus side, this removes some imports from details, and makes the file shorter. On the minus side, the ‘render timestamp’ function has a hell of a signature.
The three pieces of information for the leftmost details view column (file type, permissions, and whether xattrs are present) used to be gathered from separate sources and passed around separately before being displayed at the end. Now, file type and permissions are put into a struct, along with the xattrs boolean that’s still getting passed around all over the place but not quite as much.
This was all done because I wanted to be able to test permissions rendering, without having file type and xattrs dragged into the same function.
A field can now render itself using colours and a users reference, rather than a Table doing the rendering. This way, only the relevant fields in the Environment can be made available to the render function, and the test code loses some lines.
Override the size column for block and charater devices, so it shows the major and minor device IDs instead (which are in the Metadata struct somewhere).
This is what ls does when faced with a device.
By parsing OsStrings rather than Strings, it’s the getopts crate that’s doing the UTF-8 checking rather than us, so if one of them isn’t valid, it’ll just fail to parse rather than crash exa.
Also, save a few allocations here and there.
This makes it possible to use them in scripts. Also, I couldn’t find any other program returned a different error code! So it’s being changed to 0.
Fixed#180.
Fixes#134, a bug that showed symlinks incorrectly as broken, but only when the file was listed directly on the command-line *and* the file was in a different directory to the one exa was being run in.
I’m not sure why the old code used `String::new()`, but it doesn’t seem to affect anything.
Because the link style and status are now both available to the function that picks the colour style, we can have it highlight broken links differently.
Fixes#131.
The old option descriptions were all written at different times, and needed some consistency. This makes everything consistent between the help text, README, man page, and shell completions, and fixes some mistakes made when writing them.
This also adds the missing options to the man page, fixing #175.
We already use MetadataExt and PermissionsExt, so it already requires a Unix system — there’s no point providing fallback implementations if it wouldn’t build on those systems anyway.
For some reason, the code that calculated the width of a cell with a path in counted the width of the path twice: once from the ANSIStrings containing it, and once more added on afterwards. This meant that the grid view thought that columns were wider than they really were, meaning fewer could be fit into a grid.
Doing this meant that the escaping functionality got used in three places, so it was extracted into a generalised function in its own module.
This is slighly slower for the case where escaped characters are displayed in the same colour as the displayable characters, which happens when listing a directory’s name when recursing. Optimise this, yeah?
This turns `file` into `self.file` and `colours` into `self.colours`, but it means we don’t need to pass arguments everywhere, which will be more of a problem the more functions there are.
Most of the code has just been indented.
Rather than the *entire* file name.
The current method is extremely inefficient, but having control characters in file names is also extremely uncommon; it’s something that should be fixed, only eventually.
exa deals with cells and widths a lot: the items in a grid need to be aligned according to their *contents’* widths, rather than the length of their strings, which often included ANSI escape characters. As an optimisation, it used to calculate this separately based on the filename, and dealing with any extra characters (such as the classify ones) in that function too.
Recently, though, file names have become a lot more complicated. Classification added zero to one extra characters, and now with escaped control characters in file names, it’s not so easy to calculate the display width of a filename.
This commit removes the function that calculated the width, in favour of building the output string (it’s going to be displayed anyway) and just getting the width of what it displays instead.
It's confusing, and `ls` doesn't do this either. We're not prepending
the current path to all of the directory entries, and the user is going
to interpret the symlink target as relative to the directory containing
the symlink.
It’s the only file where its path is the same as its file name, and has been the source of numerous bugs in the past… this special-case isn’t very clean, but it works.
This adds an option (always on at the moment) to use a colour scale of green to yellow to orange for the file size field instead of always green. See #65.
This makes the Colours value pick a colour based on the size of the file, instead of necessarily having them all green. (They are all green for now, though.)
See #97 and recently #130 too.
This allows the user to pass in options such as "--ignore '*.pyc'" to not list any files ending in '.pyc' in the output. It uses the Rust glob crate and currently does a simple split on pipe, without any escaping, so it’s not really *complete*, but is at least something.
Fixes#123. The code assumes that every File that has its link_target() method called would first have been checked to make sure it’s actually a link first. Unfortunately it also assumed that the only thing that can go wrong while following a link is if the file wasn’t a link, meaning it crashes when given a link it doesn’t have permission to follow.
This makes the file_target() method able to return either a file or path for displaying, as before, but also an IO error for when things go wrong.
This changes the way that views are used to display the actual lists of files. It used to pass empty vectors to the view methods, which most of the time would not print anything because there are no files to list — except when there’s a header row which gets printed for no files.
By not calling the view method at all when there’s nothing to print, exa won’t ever print extra things in the view unless it needs to for a file.
This fixes#106 “Don’t print the header if the result set is empty”
Now when you do `--sort time` instead of saying "unknown option --sort
time" it will say "unknown options '--sort time' (choices: name...)"
with all legal options.
This also adds the legal values to the default help text.
This commit removes the 'main' function present in main.rs, renames it to exa.rs, and puts the 'main' function in its own binary. This, I think, makes it more clear how the program works and where the main entry point is.
Librarification also means that we can start testing as a whole. Two tests have been added that test everything, passing in raw command-line arguments then comparing against the binary coloured text that gets produced.
Casualties include having to specifically mark some code blocks in documentation as 'tests', as rustdoc kept on trying to execute my ANSI art.
The original options was becoming a bit unwieldy, and would have been even more so if I added the same amount of comments. So this commit splits it up.
There's no extra hiding going on here, or rearranging things within the module: (almost) everything now has to be marked 'pub' to let other sub-modules in the new options module to see it.
The trait was only used internally to the options module, so it doesn't actually need to be exist or implemented on anything! We can just impl them directly on the types and have those methods be local to the module.
This commit moves file, dir, and the feature modules into one parent 'fs' module. Now there are three main 'areas' of the code: main and options, the filesystem-touching code, and the output-displaying code.
It should be the case that nothing in 'output' touches 'std::fs'.
Fixes#108. MetadataExt now returns direct numeric types rather than platform-specific ones, so we need to adjust the functions that use these to have the new types. I've just aliased the types to specific ones so the rest of the code remains the same (file.rs is the only place that uses this)
The RFC that changed this is here: https://github.com/rust-lang/rust/pull/31551
This commit changes all the views to accommodate printing each path's prefix, if it has one.
Previously, each file was stripped of its ancestry, leaving only its file name to be displayed. So running "exa /usr/bin/*" would display only filenames, while running "ls /usr/bin/*" would display each file prefixed with "/usr/bin/". But running "ls /usr/bin/" -- without the glob -- would run ls on just the directory, printing out the file names with no prefix or anything.
This functionality turned out to be useful in quite a few situations: firstly, if the user passes in files from different directories, it would be hard to tell where they came from (especially if they have the same name, such as find | xargs). Secondly, this also applied when following symlinks, making it unclear exactly which file a symlink would be pointing to.
The reason that it did it this way beforehand was that I didn't think of these use-cases, rather than for any technical reason; this new method should not have any drawbacks save making the output slightly wider in a few cases. Compatibility with ls is also a big plus.
Fixes#104, and relates to #88 and #92.
This fixes a bug where extra sorting options (dirs first, reverse) were not applied when listing in long mode. In other words, fixes#105.
The bug occurred because the sorting function only took Files, but the details view uses File eggs that only contain Files. This commit changes the sorting function to accept anything that AsRefs to File, and impls that on both File and Egg so the same function works for both.