mirror of
https://github.com/namibia/awesome-cheatsheets.git
synced 2024-12-22 10:08:54 +00:00
383 lines
13 KiB
Markdown
383 lines
13 KiB
Markdown
# Python
|
|
|
|
* Python is an interpreted, high-level and general-purpose, dynamically typed programming language
|
|
|
|
* It is also Object oriented, modular oriented and a scripting language.
|
|
|
|
* In Python, everything is considered as an Object.
|
|
|
|
* A python file has an extension of .py
|
|
|
|
* Python follows Indentation to separate code blocks instead of flower brackets({}).
|
|
|
|
* We can run a python file by the following command in cmd(Windows) or shell(mac/linux).
|
|
|
|
`$ python <filename.py>` or `$ python3 <filename.py>`
|
|
|
|
#### By default, python doesn't require any imports to run a python file.
|
|
|
|
## Create and execute a program
|
|
|
|
1. Open up a terminal/cmd
|
|
1. Create the program: nano/cat > nameProgram.py
|
|
1. Write the program and save it
|
|
1. python nameProgram.py
|
|
|
|
<br>
|
|
|
|
### Basic Datatypes
|
|
|
|
| Data Type | Description |
|
|
| --------- | ----------- |
|
|
| int | Integer values [0, 1, -2, 3] |
|
|
| float | Floating point values [0.1, 4.532, -5.092] |
|
|
| char | Characters [a, b, @, !, `] |
|
|
| str | Strings [abc, AbC, A@B, sd!, `asa] |
|
|
| bool | Boolean Values [True, False] |
|
|
| complex | Complex numbers [2+3j, 4-1j] |
|
|
|
|
<br>
|
|
|
|
## Keywords
|
|
<br>
|
|
|
|
- As of python3.8 there are 35 keywords
|
|
|
|
| Keyword | Description | Category |
|
|
|---------- | ---------- | --------- |
|
|
| True | Boolean value for not False or 1 | Value Keyword|
|
|
| False | Boolean Value for not True or 0 | Value Keyword |
|
|
| None | No Value | Value keyword |
|
|
| and | returns true if both (oprand) are true (other language && ) | Operator keyword |
|
|
| or | returns true of either operands is true (other language || ) | Operator keyword |
|
|
| in | returns true if word is in iterator | Operator keyword |
|
|
| is | returns true if id of variables are same | Operator keyword |
|
|
| not | returns opposite Boolean value | Operator Keyword |
|
|
| if | get into block if expression is true | conditional |
|
|
| elif | for more than 1 if checks | conditional |
|
|
| else | this block will be executed if condition is false | conditional |
|
|
| for | used for looping | iteration |
|
|
| while | used for looping | iteration |
|
|
| break | get out of loop | iteration |
|
|
| continue | skip for specific condition | iteration |
|
|
| def | make user defined function | structure |
|
|
| class | make user defined classes | structure |
|
|
| lambda | make anonymous function | structure |
|
|
| with | execute code within context manager's scope | structure |
|
|
| as | alias for something | structure |
|
|
| pass | used for making empty structures(declaration) | structure |
|
|
| return | get value(s) from function, get out of function | returning keyword |
|
|
| yield | yields values instead of returning (are called generators) | returning keyword |
|
|
| import | import libraries/modules/packages | import |
|
|
| from | import specific function/classes from modules/packages | import |
|
|
| try | this block will be tried to get executed | execption handling |
|
|
| execpt | is any execption/error has occured it'll be executed | execption handling |
|
|
| finally | It'll be executed no matter execption occurs or not | execption handling |
|
|
| raise | throws any specific error/execption | execption handling |
|
|
| assert | throws an AssertionError if condition is false | execption handling |
|
|
| async | used to define asynchronous functions/co-routines | asynchronous programming |
|
|
| await | used to specify a point when control is taken back | asynchronous programming |
|
|
| del | deletes/unsets any user defined data | variable handling |
|
|
| global | used to access variables defined outsied of function | variable handling |
|
|
| nonlocal | modify variables from different scopes | variable handling |
|
|
<br>
|
|
|
|
## Operators
|
|
|
|
<br>
|
|
|
|
| Operator | Description |
|
|
|-|-|
|
|
| ( ) | grouping parenthesis, function call, tuple declaration |
|
|
| [ ] | array indexing, also declaring lists etc.|
|
|
| ! | relational not, complement, ! a yields true or false |
|
|
| ~ | bitwise not, ones complement, ~a |
|
|
| \- | unary minus, - a |
|
|
| \+ | unary plus, + a |
|
|
| \* | multiply, a * b |
|
|
| / | divide, a / b |
|
|
| % | modulo, a % b |
|
|
| \+ | add, a + b |
|
|
| \- | subtract, a - b |
|
|
| << | shift left, left operand is shifted left by right operand bits (multiply by 2) |
|
|
| \>> | shift right, left operand is shifted right by right operand bits (divide by 2) |
|
|
| < | less than, result is true or false, a %lt; b
|
|
| <= | less than or equal, result is true or false, a <= b
|
|
| \> | greater than, result is true or false, a > b
|
|
| \>= | greater than or equal, result is true or false, a >= b
|
|
| == | equal, result is true or false, a == b
|
|
| != | not equal, result is true or false, a != b
|
|
| & | bitwise and, a & b
|
|
| ^ | bitwise exclusive or XOR, a ^ b
|
|
| \| | bitwise or, a | b
|
|
| &&, and | relational and, result is true or false, a < b && c >= d
|
|
| \|\|, or | relational or, result is true or false, a < b \|\| c >= d |
|
|
| = | store or assignment |
|
|
| += | add and store |
|
|
| -= | subtract and store |
|
|
| *= | multiply and store |
|
|
| /= | divide and store|
|
|
| %= | modulo and store|
|
|
| <<= | shift left and store|
|
|
| \>>= | shift right and store|
|
|
| &= | bitwise and and store|
|
|
| ^= | bitwise exclusive or and store|
|
|
| \|= | bitwise or and store|
|
|
| , | separator as in ( y=x,z=++x )|
|
|
|
|
### Basic Data Structures
|
|
|
|
### List
|
|
|
|
- List is a collection which is ordered and changeable. Allows duplicate members.
|
|
|
|
|
|
- Lists are created using square brackets:
|
|
|
|
```python
|
|
thislist = ["apple", "banana", "cherry"]
|
|
```
|
|
|
|
- List items are ordered, changeable, and allow duplicate values.
|
|
|
|
- List items are indexed, the first item has index `[0]`, the second item has index `[1]` etc.
|
|
|
|
- The list is changeable, meaning that we can change, add, and remove items in a list after it has been created.
|
|
|
|
- To determine how many items a list has, use the `len()` function.
|
|
|
|
- A list can contain different data types:
|
|
```python
|
|
list1 = ["abc", 34, True, 40, "male"]
|
|
```
|
|
- It is also possible to use the list() constructor when creating a new list
|
|
```python
|
|
thislist = list(("apple", "banana", "cherry")) # note the double round-brackets
|
|
```
|
|
- pop() function removes the last value in the given list by default.
|
|
|
|
```python
|
|
thislist = ["apple", "banana", "cherry"]
|
|
|
|
print(thislist.pop())# cherry
|
|
print(thislist.pop(0)) #apple
|
|
|
|
```
|
|
|
|
|
|
|
|
### Tuple
|
|
|
|
- Tuple is a collection which is ordered and unchangeable. Allows duplicate members.
|
|
- A tuple is a collection which is ordered and unchangeable.
|
|
- Tuples are written with round brackets.
|
|
```python
|
|
thistuple = ("apple", "banana", "cherry")
|
|
```
|
|
- Tuple items are ordered, unchangeable, and allow duplicate values.
|
|
- Tuple items are indexed, the first item has index `[0]`, the second item has index `[1]` etc.
|
|
- When we say that tuples are ordered, it means that the items have a defined order, and that order will not change.
|
|
|
|
- Tuples are unchangeable, meaning that we cannot change, add or remove items after the tuple has been created.
|
|
- Since tuple are indexed, tuples can have items with the same value:
|
|
- Tuples allow duplicate values:
|
|
```python
|
|
thistuple = ("apple", "banana", "cherry", "apple", "cherry")
|
|
```
|
|
- To determine how many items a tuple has, use the `len()`function:
|
|
```python
|
|
thistuple = ("apple", "banana", "cherry")
|
|
print(len(thistuple))
|
|
```
|
|
- To create a tuple with only one item, you have to add a comma after the item, otherwise Python will not recognize it as a tuple.
|
|
```python
|
|
thistuple = ("apple",)
|
|
print(type(thistuple))
|
|
|
|
#NOT a tuple
|
|
thistuple = ("apple")
|
|
print(type(thistuple))
|
|
```
|
|
- It is also possible to use the tuple() constructor to make a tuple.
|
|
```python
|
|
|
|
thistuple = tuple(("apple", "banana", "cherry")) # note the double round-brackets
|
|
print(thistuple)
|
|
```
|
|
|
|
### Set
|
|
- Set is a collection which is unordered and unindexed. No duplicate members.
|
|
- A set is a collection which is both unordered and unindexed.
|
|
```python
|
|
thisset = {"apple", "banana", "cherry"}
|
|
```
|
|
- Set items are unordered, unchangeable, and do not allow duplicate values.
|
|
- Unordered means that the items in a set do not have a defined order.
|
|
|
|
- Set items can appear in a different order every time you use them, and cannot be referred to by index or key.
|
|
|
|
- Sets are unchangeable, meaning that we cannot change the items after the set has been created.
|
|
- Duplicate values will be ignored.
|
|
- To determine how many items a set has, use the `len()` method.
|
|
```python
|
|
thisset = {"apple", "banana", "cherry"}
|
|
|
|
print(len(thisset))
|
|
```
|
|
- Set items can be of any data type:
|
|
```python
|
|
set1 = {"apple", "banana", "cherry"}
|
|
set2 = {1, 5, 7, 9, 3}
|
|
set3 = {True, False, False}
|
|
set4 = {"abc", 34, True, 40, "male"}
|
|
```
|
|
- It is also possible to use the `set()` constructor to make a set.
|
|
```python
|
|
thisset = set(("apple", "banana", "cherry")) # note the double round-brackets
|
|
```
|
|
- frozenset() is just an immutable version of Set. While elements of a set can be modified at any time, elements of the frozen set remain the same after creation.
|
|
|
|
```python
|
|
set1 = {"apple", "banana", "cherry"}
|
|
frzset=frozenset(set1)
|
|
print(frzset)
|
|
```
|
|
|
|
|
|
|
|
### Dictionary
|
|
|
|
- Dictionary is a collection which is unordered and changeable. No duplicate members.
|
|
- Dictionaries are used to store data values in key:value pairs.
|
|
- Dictionaries are written with curly brackets, and have keys and values:
|
|
```python
|
|
thisdict = {
|
|
"brand": "Ford",
|
|
"model": "Mustang",
|
|
"year": 1964
|
|
}
|
|
```
|
|
- Dictionary items are presented in key:value pairs, and can be referred to by using the key name.
|
|
```python
|
|
thisdict = {
|
|
"brand": "Ford",
|
|
"model": "Mustang",
|
|
"year": 1964
|
|
}
|
|
print(thisdict["brand"])
|
|
```
|
|
- Dictionaries are changeable, meaning that we can change, add or remove items after the dictionary has been created.
|
|
- Dictionaries cannot have two items with the same key.
|
|
- Duplicate values will overwrite existing values.
|
|
- To determine how many items a dictionary has, use the `len()` function.
|
|
```python
|
|
print(len(thisdict))
|
|
```
|
|
- The values in dictionary items can be of any data type
|
|
```python
|
|
thisdict = {
|
|
"brand": "Ford",
|
|
"electric": False,
|
|
"year": 1964,
|
|
"colors": ["red", "white", "blue"]
|
|
}
|
|
```
|
|
|
|
- pop() Function is used to remove a specific value from a dictionary. You can only use key bot the value. Unlike Lists you have to give a value to this function
|
|
|
|
```python
|
|
car = {
|
|
"brand": "Ford",
|
|
"model": "Mustang",
|
|
"year": 1964
|
|
}
|
|
|
|
x = car.pop("model")
|
|
|
|
print(x)# Mustang
|
|
print(car)#{'brand': 'Ford', 'year': 1964}
|
|
```
|
|
|
|
|
|
|
|
### Conditional branching
|
|
|
|
```python
|
|
if condition:
|
|
pass
|
|
elif condition2:
|
|
pass
|
|
else:
|
|
pass
|
|
```
|
|
### Loops
|
|
|
|
Python has two primitive loop commands:
|
|
1. while loops
|
|
2. for loops
|
|
|
|
#### While loop
|
|
- With the `while` loop we can execute a set of statements as long as a condition is true.
|
|
- Example: Print i as long as i is less than 6
|
|
```python
|
|
i = 1
|
|
while i < 6:
|
|
print(i)
|
|
i += 1
|
|
```
|
|
- The while loop requires relevant variables to be ready, in this example we need to define an indexing variable, i, which we set to 1.
|
|
- With the `break` statement we can stop the loop even if the while condition is true
|
|
- With the continue statement we can stop the current iteration, and continue with the next.
|
|
|
|
- With the else statement we can run a block of code once when the condition no longer is true.
|
|
|
|
#### For loop
|
|
- A for loop is used for iterating over a sequence (that is either a list, a tuple, a dictionary, a set, or a string).
|
|
|
|
- This is less like the for keyword in other programming languages, and works more like an iterator method as found in other object-orientated programming languages.
|
|
|
|
- With the for loop we can execute a set of statements, once for each item in a list, tuple, set etc.
|
|
```python
|
|
fruits = ["apple", "banana", "cherry"]
|
|
for x in fruits:
|
|
print(x)
|
|
```
|
|
- The for loop does not require an indexing variable to set beforehand.
|
|
- To loop through a set of code a specified number of times, we can use the range() function.
|
|
- The range() function returns a sequence of numbers, starting from 0 by default, and increments by 1 (by default), and ends at a specified number.
|
|
- The range() function defaults to increment the sequence by 1, however it is possible to specify the increment value by adding a third parameter: range(2, 30, 3).
|
|
- The else keyword in a for loop specifies a block of code to be executed when the loop is finished.
|
|
A nested loop is a loop inside a loop.
|
|
|
|
- The "inner loop" will be executed one time for each iteration of the "outer loop":
|
|
|
|
```python
|
|
adj = ["red", "big", "tasty"]
|
|
fruits = ["apple", "banana", "cherry"]
|
|
|
|
for x in adj:
|
|
for y in fruits:
|
|
print(x, y)
|
|
```
|
|
- for loops cannot be empty, but if you for some reason have a for loop with no content, put in the pass statement to avoid getting an error.
|
|
|
|
```python
|
|
for x in [0, 1, 2]:
|
|
pass
|
|
```
|
|
|
|
### Function definition
|
|
```python
|
|
def function_name():
|
|
return
|
|
```
|
|
### Function call
|
|
|
|
```python
|
|
function_name()
|
|
```
|
|
|
|
* We need not to specify the return type of the function.
|
|
* Functions by default return `None`
|
|
* We can return any datatype.
|