php-ml/tests/NeuralNetwork/ActivationFunction/PReLUTest.php

60 lines
1.4 KiB
PHP
Raw Normal View History

<?php
declare(strict_types=1);
namespace Phpml\Tests\NeuralNetwork\ActivationFunction;
use Phpml\NeuralNetwork\ActivationFunction\PReLU;
use PHPUnit\Framework\TestCase;
class PReLUTest extends TestCase
{
/**
* @dataProvider preluProvider
2018-10-28 06:44:52 +00:00
*
* @param float|int $value
*/
2018-10-28 06:44:52 +00:00
public function testPReLUActivationFunction(float $beta, float $expected, $value): void
{
$prelu = new PReLU($beta);
2018-10-28 06:44:52 +00:00
self::assertEquals($expected, $prelu->compute($value), '', 0.001);
}
public function preluProvider(): array
{
return [
[0.01, 0.367, 0.367],
[0.0, 1, 1],
[0.3, -0.3, -1],
[0.9, 3, 3],
[0.02, -0.06, -3],
];
}
/**
* @dataProvider preluDerivativeProvider
2018-10-28 06:44:52 +00:00
*
* @param float|int $value
*/
2018-10-28 06:44:52 +00:00
public function testPReLUDerivative(float $beta, float $expected, $value): void
{
$prelu = new PReLU($beta);
$activatedValue = $prelu->compute($value);
2018-10-28 06:44:52 +00:00
self::assertEquals($expected, $prelu->differentiate($value, $activatedValue));
}
public function preluDerivativeProvider(): array
{
return [
[0.5, 0.5, -3],
[0.5, 1, 0],
[0.5, 1, 1],
[0.01, 1, 1],
[1, 1, 1],
[0.3, 1, 0.1],
[0.1, 0.1, -0.1],
];
}
}