mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2025-01-09 00:20:53 +00:00
Fix activation functions support (#163)
- Backpropagation using the neuron activation functions derivative - instead of hardcoded sigmoid derivative - Added missing activation functions derivatives - Sigmoid forced for the output layer - Updated ThresholdedReLU default threshold to 0 (acts as a ReLU) - Unit tests for derivatives - Unit tests for classifiers using different activation functions - Added missing docs
This commit is contained in:
parent
9938cf2911
commit
e83f7b95d5
@ -66,4 +66,6 @@ $mlp->predict([[1, 1, 1, 1], [0, 0, 0, 0]]);
|
||||
* BinaryStep
|
||||
* Gaussian
|
||||
* HyperbolicTangent
|
||||
* Parametric Rectified Linear Unit
|
||||
* Sigmoid (default)
|
||||
* Thresholded Rectified Linear Unit
|
||||
|
@ -10,4 +10,10 @@ interface ActivationFunction
|
||||
* @param float|int $value
|
||||
*/
|
||||
public function compute($value): float;
|
||||
|
||||
/**
|
||||
* @param float|int $value
|
||||
* @param float|int $computedvalue
|
||||
*/
|
||||
public function differentiate($value, $computedvalue): float;
|
||||
}
|
||||
|
@ -15,4 +15,17 @@ class BinaryStep implements ActivationFunction
|
||||
{
|
||||
return $value >= 0 ? 1.0 : 0.0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param float|int $value
|
||||
* @param float|int $computedvalue
|
||||
*/
|
||||
public function differentiate($value, $computedvalue): float
|
||||
{
|
||||
if ($value === 0 || $value === 0.0) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
@ -15,4 +15,13 @@ class Gaussian implements ActivationFunction
|
||||
{
|
||||
return exp(-pow($value, 2));
|
||||
}
|
||||
|
||||
/**
|
||||
* @param float|int $value
|
||||
* @param float|int $calculatedvalue
|
||||
*/
|
||||
public function differentiate($value, $calculatedvalue): float
|
||||
{
|
||||
return -2 * $value * $calculatedvalue;
|
||||
}
|
||||
}
|
||||
|
@ -25,4 +25,13 @@ class HyperbolicTangent implements ActivationFunction
|
||||
{
|
||||
return tanh($this->beta * $value);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param float|int $value
|
||||
* @param float|int $computedvalue
|
||||
*/
|
||||
public function differentiate($value, $computedvalue): float
|
||||
{
|
||||
return 1 - pow($computedvalue, 2);
|
||||
}
|
||||
}
|
||||
|
@ -25,4 +25,13 @@ class PReLU implements ActivationFunction
|
||||
{
|
||||
return $value >= 0 ? $value : $this->beta * $value;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param float|int $value
|
||||
* @param float|int $computedvalue
|
||||
*/
|
||||
public function differentiate($value, $computedvalue): float
|
||||
{
|
||||
return $computedvalue >= 0 ? 1.0 : $this->beta;
|
||||
}
|
||||
}
|
||||
|
@ -25,4 +25,13 @@ class Sigmoid implements ActivationFunction
|
||||
{
|
||||
return 1 / (1 + exp(-$this->beta * $value));
|
||||
}
|
||||
|
||||
/**
|
||||
* @param float|int $value
|
||||
* @param float|int $computedvalue
|
||||
*/
|
||||
public function differentiate($value, $computedvalue): float
|
||||
{
|
||||
return $computedvalue * (1 - $computedvalue);
|
||||
}
|
||||
}
|
||||
|
@ -13,7 +13,7 @@ class ThresholdedReLU implements ActivationFunction
|
||||
*/
|
||||
private $theta;
|
||||
|
||||
public function __construct(float $theta = 1.0)
|
||||
public function __construct(float $theta = 0.0)
|
||||
{
|
||||
$this->theta = $theta;
|
||||
}
|
||||
@ -25,4 +25,13 @@ class ThresholdedReLU implements ActivationFunction
|
||||
{
|
||||
return $value > $this->theta ? $value : 0.0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param float|int $value
|
||||
* @param float|int $calculatedvalue
|
||||
*/
|
||||
public function differentiate($value, $calculatedvalue): float
|
||||
{
|
||||
return $calculatedvalue >= $this->theta ? 1.0 : 0.0;
|
||||
}
|
||||
}
|
||||
|
@ -9,6 +9,7 @@ use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\Helper\Predictable;
|
||||
use Phpml\IncrementalEstimator;
|
||||
use Phpml\NeuralNetwork\ActivationFunction;
|
||||
use Phpml\NeuralNetwork\ActivationFunction\Sigmoid;
|
||||
use Phpml\NeuralNetwork\Layer;
|
||||
use Phpml\NeuralNetwork\Node\Bias;
|
||||
use Phpml\NeuralNetwork\Node\Input;
|
||||
@ -125,7 +126,10 @@ abstract class MultilayerPerceptron extends LayeredNetwork implements Estimator,
|
||||
{
|
||||
$this->addInputLayer($this->inputLayerFeatures);
|
||||
$this->addNeuronLayers($this->hiddenLayers, $this->activationFunction);
|
||||
$this->addNeuronLayers([count($this->classes)], $this->activationFunction);
|
||||
|
||||
// Sigmoid function for the output layer as we want a value from 0 to 1.
|
||||
$sigmoid = new Sigmoid();
|
||||
$this->addNeuronLayers([count($this->classes)], $sigmoid);
|
||||
|
||||
$this->addBiasNodes();
|
||||
$this->generateSynapses();
|
||||
|
@ -26,6 +26,11 @@ class Neuron implements Node
|
||||
*/
|
||||
protected $output = 0.0;
|
||||
|
||||
/**
|
||||
* @var float
|
||||
*/
|
||||
protected $z = 0.0;
|
||||
|
||||
public function __construct(?ActivationFunction $activationFunction = null)
|
||||
{
|
||||
$this->activationFunction = $activationFunction ?: new Sigmoid();
|
||||
@ -47,19 +52,25 @@ class Neuron implements Node
|
||||
public function getOutput(): float
|
||||
{
|
||||
if ($this->output === 0.0) {
|
||||
$sum = 0.0;
|
||||
$this->z = 0;
|
||||
foreach ($this->synapses as $synapse) {
|
||||
$sum += $synapse->getOutput();
|
||||
$this->z += $synapse->getOutput();
|
||||
}
|
||||
|
||||
$this->output = $this->activationFunction->compute($sum);
|
||||
$this->output = $this->activationFunction->compute($this->z);
|
||||
}
|
||||
|
||||
return $this->output;
|
||||
}
|
||||
|
||||
public function getDerivative(): float
|
||||
{
|
||||
return $this->activationFunction->differentiate($this->z, $this->output);
|
||||
}
|
||||
|
||||
public function reset(): void
|
||||
{
|
||||
$this->output = 0.0;
|
||||
$this->z = 0.0;
|
||||
}
|
||||
}
|
||||
|
@ -64,7 +64,7 @@ class Backpropagation
|
||||
private function getSigma(Neuron $neuron, int $targetClass, int $key, bool $lastLayer): float
|
||||
{
|
||||
$neuronOutput = $neuron->getOutput();
|
||||
$sigma = $neuronOutput * (1 - $neuronOutput);
|
||||
$sigma = $neuron->getDerivative();
|
||||
|
||||
if ($lastLayer) {
|
||||
$value = 0;
|
||||
|
@ -7,6 +7,11 @@ namespace Phpml\Tests\Classification;
|
||||
use Phpml\Classification\MLPClassifier;
|
||||
use Phpml\Exception\InvalidArgumentException;
|
||||
use Phpml\ModelManager;
|
||||
use Phpml\NeuralNetwork\ActivationFunction;
|
||||
use Phpml\NeuralNetwork\ActivationFunction\HyperbolicTangent;
|
||||
use Phpml\NeuralNetwork\ActivationFunction\PReLU;
|
||||
use Phpml\NeuralNetwork\ActivationFunction\Sigmoid;
|
||||
use Phpml\NeuralNetwork\ActivationFunction\ThresholdedReLU;
|
||||
use Phpml\NeuralNetwork\Node\Neuron;
|
||||
use PHPUnit\Framework\TestCase;
|
||||
|
||||
@ -141,6 +146,33 @@ class MLPClassifierTest extends TestCase
|
||||
$this->assertEquals(4, $network->predict([0, 0, 0, 0, 0]));
|
||||
}
|
||||
|
||||
/**
|
||||
* @dataProvider activationFunctionsProvider
|
||||
*/
|
||||
public function testBackpropagationActivationFunctions(ActivationFunction $activationFunction): void
|
||||
{
|
||||
$network = new MLPClassifier(5, [3], ['a', 'b'], 10000, $activationFunction);
|
||||
$network->train(
|
||||
[[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 1, 0], [1, 1, 1, 1, 1]],
|
||||
['a', 'b', 'a', 'a']
|
||||
);
|
||||
|
||||
$this->assertEquals('a', $network->predict([1, 0, 0, 0, 0]));
|
||||
$this->assertEquals('b', $network->predict([0, 1, 0, 0, 0]));
|
||||
$this->assertEquals('a', $network->predict([0, 0, 1, 1, 0]));
|
||||
$this->assertEquals('a', $network->predict([1, 1, 1, 1, 1]));
|
||||
}
|
||||
|
||||
public function activationFunctionsProvider(): array
|
||||
{
|
||||
return [
|
||||
[new Sigmoid()],
|
||||
[new HyperbolicTangent()],
|
||||
[new PReLU()],
|
||||
[new ThresholdedReLU()],
|
||||
];
|
||||
}
|
||||
|
||||
public function testSaveAndRestore(): void
|
||||
{
|
||||
// Instantinate new Percetron trained for OR problem
|
||||
|
@ -27,4 +27,23 @@ class BinaryStepTest extends TestCase
|
||||
[0, -0.1],
|
||||
];
|
||||
}
|
||||
|
||||
/**
|
||||
* @dataProvider binaryStepDerivativeProvider
|
||||
*/
|
||||
public function testBinaryStepDerivative($expected, $value): void
|
||||
{
|
||||
$binaryStep = new BinaryStep();
|
||||
$activatedValue = $binaryStep->compute($value);
|
||||
$this->assertEquals($expected, $binaryStep->differentiate($value, $activatedValue));
|
||||
}
|
||||
|
||||
public function binaryStepDerivativeProvider(): array
|
||||
{
|
||||
return [
|
||||
[0, -1],
|
||||
[1, 0],
|
||||
[0, 1],
|
||||
];
|
||||
}
|
||||
}
|
||||
|
@ -29,4 +29,27 @@ class GaussianTest extends TestCase
|
||||
[0, -3],
|
||||
];
|
||||
}
|
||||
|
||||
/**
|
||||
* @dataProvider gaussianDerivativeProvider
|
||||
*/
|
||||
public function testGaussianDerivative($expected, $value): void
|
||||
{
|
||||
$gaussian = new Gaussian();
|
||||
$activatedValue = $gaussian->compute($value);
|
||||
$this->assertEquals($expected, $gaussian->differentiate($value, $activatedValue), '', 0.001);
|
||||
}
|
||||
|
||||
public function gaussianDerivativeProvider(): array
|
||||
{
|
||||
return [
|
||||
[0, -5],
|
||||
[0.735, -1],
|
||||
[0.779, -0.5],
|
||||
[0, 0],
|
||||
[-0.779, 0.5],
|
||||
[-0.735, 1],
|
||||
[0, 5],
|
||||
];
|
||||
}
|
||||
}
|
||||
|
@ -30,4 +30,28 @@ class HyperboliTangentTest extends TestCase
|
||||
[0.3, 0, 0],
|
||||
];
|
||||
}
|
||||
|
||||
/**
|
||||
* @dataProvider tanhDerivativeProvider
|
||||
*/
|
||||
public function testHyperbolicTangentDerivative($beta, $expected, $value): void
|
||||
{
|
||||
$tanh = new HyperbolicTangent($beta);
|
||||
$activatedValue = $tanh->compute($value);
|
||||
$this->assertEquals($expected, $tanh->differentiate($value, $activatedValue), '', 0.001);
|
||||
}
|
||||
|
||||
public function tanhDerivativeProvider(): array
|
||||
{
|
||||
return [
|
||||
[1.0, 0, -6],
|
||||
[1.0, 0.419, -1],
|
||||
[1.0, 1, 0],
|
||||
[1.0, 0.419, 1],
|
||||
[1.0, 0, 6],
|
||||
[0.5, 0.786, 1],
|
||||
[0.5, 0.786, -1],
|
||||
[0.3, 1, 0],
|
||||
];
|
||||
}
|
||||
}
|
||||
|
@ -29,4 +29,27 @@ class PReLUTest extends TestCase
|
||||
[0.02, -0.06, -3],
|
||||
];
|
||||
}
|
||||
|
||||
/**
|
||||
* @dataProvider preluDerivativeProvider
|
||||
*/
|
||||
public function testPReLUDerivative($beta, $expected, $value): void
|
||||
{
|
||||
$prelu = new PReLU($beta);
|
||||
$activatedValue = $prelu->compute($value);
|
||||
$this->assertEquals($expected, $prelu->differentiate($value, $activatedValue));
|
||||
}
|
||||
|
||||
public function preluDerivativeProvider(): array
|
||||
{
|
||||
return [
|
||||
[0.5, 0.5, -3],
|
||||
[0.5, 1, 0],
|
||||
[0.5, 1, 1],
|
||||
[0.01, 1, 1],
|
||||
[1, 1, 1],
|
||||
[0.3, 1, 0.1],
|
||||
[0.1, 0.1, -0.1],
|
||||
];
|
||||
}
|
||||
}
|
||||
|
@ -30,4 +30,28 @@ class SigmoidTest extends TestCase
|
||||
[2.0, 0, -3.75],
|
||||
];
|
||||
}
|
||||
|
||||
/**
|
||||
* @dataProvider sigmoidDerivativeProvider
|
||||
*/
|
||||
public function testSigmoidDerivative($beta, $expected, $value): void
|
||||
{
|
||||
$sigmoid = new Sigmoid($beta);
|
||||
$activatedValue = $sigmoid->compute($value);
|
||||
$this->assertEquals($expected, $sigmoid->differentiate($value, $activatedValue), '', 0.001);
|
||||
}
|
||||
|
||||
public function sigmoidDerivativeProvider(): array
|
||||
{
|
||||
return [
|
||||
[1.0, 0, -10],
|
||||
[1, 0.006, -5],
|
||||
[1.0, 0.25, 0],
|
||||
[1, 0.006, 5],
|
||||
[1.0, 0, 10],
|
||||
[2.0, 0.25, 0],
|
||||
[0.5, 0.246, 0.5],
|
||||
[0.5, 0.241, 0.75],
|
||||
];
|
||||
}
|
||||
}
|
||||
|
@ -28,4 +28,26 @@ class ThresholdedReLUTest extends TestCase
|
||||
[0.9, 0, 0.1],
|
||||
];
|
||||
}
|
||||
|
||||
/**
|
||||
* @dataProvider thresholdDerivativeProvider
|
||||
*/
|
||||
public function testThresholdedReLUDerivative($theta, $expected, $value): void
|
||||
{
|
||||
$thresholdedReLU = new ThresholdedReLU($theta);
|
||||
$activatedValue = $thresholdedReLU->compute($value);
|
||||
$this->assertEquals($expected, $thresholdedReLU->differentiate($value, $activatedValue));
|
||||
}
|
||||
|
||||
public function thresholdDerivativeProvider(): array
|
||||
{
|
||||
return [
|
||||
[0, 1, 1],
|
||||
[0, 1, 0],
|
||||
[0.5, 1, 1],
|
||||
[0.5, 1, 1],
|
||||
[0.5, 0, 0],
|
||||
[2, 0, -1],
|
||||
];
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user