mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-26 06:46:45 +00:00
36 lines
730 B
Markdown
36 lines
730 B
Markdown
|
# KNearestNeighbors Classifier
|
||
|
|
||
|
Classifier implementing the k-nearest neighbors algorithm.
|
||
|
|
||
|
### Constructor Parameters
|
||
|
|
||
|
* $k - number of nearest neighbors to scan (default: 3)
|
||
|
|
||
|
```
|
||
|
$classifier = new KNearestNeighbors($k=4);
|
||
|
```
|
||
|
|
||
|
### Train
|
||
|
|
||
|
To train a classifier simply provide train samples and labels (as `array`):
|
||
|
|
||
|
```
|
||
|
$samples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];
|
||
|
$labels = ['a', 'a', 'a', 'b', 'b', 'b'];
|
||
|
|
||
|
$classifier = new KNearestNeighbors();
|
||
|
$classifier->train($samples, $labels);
|
||
|
```
|
||
|
|
||
|
### Predict
|
||
|
|
||
|
To predict sample class use `predict` method. You can provide one sample or array of samples:
|
||
|
|
||
|
```
|
||
|
$classifier->predict([3, 2]);
|
||
|
// return 'b'
|
||
|
|
||
|
$classifier->predict([[3, 2], [1, 5]]);
|
||
|
// return ['b', 'a']
|
||
|
```
|