62 lines
1.5 KiB
PHP
Raw Normal View History

<?php
2016-11-20 22:53:17 +01:00
declare(strict_types=1);
namespace Phpml\Tests\NeuralNetwork\ActivationFunction;
use Phpml\NeuralNetwork\ActivationFunction\Sigmoid;
2017-02-03 12:58:25 +01:00
use PHPUnit\Framework\TestCase;
2017-02-03 12:58:25 +01:00
class SigmoidTest extends TestCase
{
/**
* @dataProvider sigmoidProvider
2018-10-28 07:44:52 +01:00
*
* @param float|int $value
*/
2018-10-28 07:44:52 +01:00
public function testSigmoidActivationFunction(float $beta, float $expected, $value): void
{
$sigmoid = new Sigmoid($beta);
self::assertEqualsWithDelta($expected, $sigmoid->compute($value), 0.001);
}
public function sigmoidProvider(): array
{
return [
[1.0, 1, 7.25],
[2.0, 1, 3.75],
[1.0, 0.5, 0],
[0.5, 0.5, 0],
[1.0, 0, -7.25],
[2.0, 0, -3.75],
];
}
/**
* @dataProvider sigmoidDerivativeProvider
2018-10-28 07:44:52 +01:00
*
* @param float|int $value
*/
2018-10-28 07:44:52 +01:00
public function testSigmoidDerivative(float $beta, float $expected, $value): void
{
$sigmoid = new Sigmoid($beta);
$activatedValue = $sigmoid->compute($value);
self::assertEqualsWithDelta($expected, $sigmoid->differentiate($value, $activatedValue), 0.001);
}
public function sigmoidDerivativeProvider(): array
{
return [
[1.0, 0, -10],
[1, 0.006, -5],
[1.0, 0.25, 0],
[1, 0.006, 5],
[1.0, 0, 10],
[2.0, 0.25, 0],
[0.5, 0.246, 0.5],
[0.5, 0.241, 0.75],
];
}
}