mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-21 20:45:10 +00:00
Apply cs fixes for NaiveBayes
This commit is contained in:
parent
e603d60841
commit
d19ddb8507
@ -12,24 +12,62 @@ use Phpml\Math\Statistic\StandardDeviation;
|
||||
class NaiveBayes implements Classifier
|
||||
{
|
||||
use Trainable, Predictable;
|
||||
|
||||
const CONTINUOS = 1;
|
||||
const NOMINAL = 2;
|
||||
const EPSILON = 1e-10;
|
||||
private $std = array();
|
||||
private $mean= array();
|
||||
private $discreteProb = array();
|
||||
private $dataType = array();
|
||||
private $p = array();
|
||||
|
||||
/**
|
||||
* @var array
|
||||
*/
|
||||
private $std = [];
|
||||
|
||||
/**
|
||||
* @var array
|
||||
*/
|
||||
private $mean= [];
|
||||
|
||||
/**
|
||||
* @var array
|
||||
*/
|
||||
private $discreteProb = [];
|
||||
|
||||
/**
|
||||
* @var array
|
||||
*/
|
||||
private $dataType = [];
|
||||
|
||||
/**
|
||||
* @var array
|
||||
*/
|
||||
private $p = [];
|
||||
|
||||
/**
|
||||
* @var int
|
||||
*/
|
||||
private $sampleCount = 0;
|
||||
|
||||
/**
|
||||
* @var int
|
||||
*/
|
||||
private $featureCount = 0;
|
||||
private $labels = array();
|
||||
|
||||
/**
|
||||
* @var array
|
||||
*/
|
||||
private $labels = [];
|
||||
|
||||
/**
|
||||
* @param array $samples
|
||||
* @param array $targets
|
||||
*/
|
||||
public function train(array $samples, array $targets)
|
||||
{
|
||||
$this->samples = $samples;
|
||||
$this->targets = $targets;
|
||||
$this->sampleCount = count($samples);
|
||||
$this->featureCount = count($samples[0]);
|
||||
// Get distinct targets
|
||||
|
||||
$this->labels = $targets;
|
||||
array_unique($this->labels);
|
||||
foreach ($this->labels as $label) {
|
||||
@ -67,7 +105,7 @@ class NaiveBayes implements Classifier
|
||||
}, $db);
|
||||
} else {
|
||||
$this->mean[$label][$i] = Mean::arithmetic($values);
|
||||
// Add epsilon in order to avoid zero stdev
|
||||
// Add epsilon in order to avoid zero stdev
|
||||
$this->std[$label][$i] = 1e-10 + StandardDeviation::population($values, false);
|
||||
}
|
||||
}
|
||||
@ -75,10 +113,11 @@ class NaiveBayes implements Classifier
|
||||
|
||||
/**
|
||||
* Calculates the probability P(label|sample_n)
|
||||
*
|
||||
*
|
||||
* @param array $sample
|
||||
* @param int $feature
|
||||
* @param string $label
|
||||
* @return float
|
||||
*/
|
||||
private function sampleProbability($sample, $feature, $label)
|
||||
{
|
||||
@ -94,14 +133,14 @@ class NaiveBayes implements Classifier
|
||||
$mean= $this->mean[$label][$feature];
|
||||
// Calculate the probability density by use of normal/Gaussian distribution
|
||||
// Ref: https://en.wikipedia.org/wiki/Normal_distribution
|
||||
//
|
||||
// In order to avoid numerical errors because of small or zero values,
|
||||
// some libraries adopt taking log of calculations such as
|
||||
// scikit-learn did.
|
||||
// (See : https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py)
|
||||
$pdf = -0.5 * log(2.0 * pi() * $std * $std);
|
||||
$pdf -= 0.5 * pow($value - $mean, 2) / ($std * $std);
|
||||
return $pdf;
|
||||
//
|
||||
// In order to avoid numerical errors because of small or zero values,
|
||||
// some libraries adopt taking log of calculations such as
|
||||
// scikit-learn did.
|
||||
// (See : https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py)
|
||||
$pdf = -0.5 * log(2.0 * pi() * $std * $std);
|
||||
$pdf -= 0.5 * pow($value - $mean, 2) / ($std * $std);
|
||||
return $pdf;
|
||||
}
|
||||
|
||||
/**
|
||||
|
Loading…
Reference in New Issue
Block a user