David Monllaó e83f7b95d5 Fix activation functions support (#163)
- Backpropagation using the neuron activation functions derivative
- instead of hardcoded sigmoid derivative
- Added missing activation functions derivatives
- Sigmoid forced for the output layer
- Updated ThresholdedReLU default threshold to 0 (acts as a ReLU)
- Unit tests for derivatives
- Unit tests for classifiers using different activation functions
- Added missing docs
2018-01-09 11:09:59 +01:00

56 lines
1.2 KiB
PHP

<?php
declare(strict_types=1);
namespace Phpml\Tests\NeuralNetwork\ActivationFunction;
use Phpml\NeuralNetwork\ActivationFunction\Gaussian;
use PHPUnit\Framework\TestCase;
class GaussianTest extends TestCase
{
/**
* @dataProvider gaussianProvider
*/
public function testGaussianActivationFunction($expected, $value): void
{
$gaussian = new Gaussian();
$this->assertEquals($expected, $gaussian->compute($value), '', 0.001);
}
public function gaussianProvider(): array
{
return [
[0.367, 1],
[1, 0],
[0.367, -1],
[0, 3],
[0, -3],
];
}
/**
* @dataProvider gaussianDerivativeProvider
*/
public function testGaussianDerivative($expected, $value): void
{
$gaussian = new Gaussian();
$activatedValue = $gaussian->compute($value);
$this->assertEquals($expected, $gaussian->differentiate($value, $activatedValue), '', 0.001);
}
public function gaussianDerivativeProvider(): array
{
return [
[0, -5],
[0.735, -1],
[0.779, -0.5],
[0, 0],
[-0.779, 0.5],
[-0.735, 1],
[0, 5],
];
}
}