php-ml/docs/index.md
Arkadiusz Kondas 76d15e9691 add php-ml logo
2016-07-17 00:31:47 +02:00

97 lines
3.5 KiB
Markdown

# PHP-ML - Machine Learning library for PHP
[![Build Status](https://scrutinizer-ci.com/g/php-ai/php-ml/badges/build.png?b=develop)](https://scrutinizer-ci.com/g/php-ai/php-ml/build-status/develop)
[![Documentation Status](https://readthedocs.org/projects/php-ml/badge/?version=develop)](http://php-ml.readthedocs.org/en/develop/?badge=develop)
[![Total Downloads](https://poser.pugx.org/php-ai/php-ml/downloads.svg)](https://packagist.org/packages/php-ai/php-ml)
[![License](https://poser.pugx.org/php-ai/php-ml/license.svg)](https://packagist.org/packages/php-ai/php-ml)
[![Scrutinizer Code Quality](https://scrutinizer-ci.com/g/php-ai/php-ml/badges/quality-score.png?b=develop)](https://scrutinizer-ci.com/g/php-ai/php-ml/?branch=develop)
![PHP-ML - Machine Learning library for PHP](assets/php-ml-logo.png)
Fresh approach to Machine Learning in PHP. Note that at the moment PHP is not the best choice for machine learning but maybe this will change ...
Simple example of classification:
```php
use Phpml\Classification\KNearestNeighbors;
$samples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];
$labels = ['a', 'a', 'a', 'b', 'b', 'b'];
$classifier = new KNearestNeighbors();
$classifier->train($samples, $labels);
$classifier->predict([3, 2]);
// return 'b'
```
## Documentation
To find out how to use PHP-ML follow [Documentation](http://php-ml.readthedocs.org/).
## Installation
Currently this library is in the process of developing, but You can install it with Composer:
```
composer require php-ai/php-ml
```
## Features
* Classification
* [SVC](machine-learning/classification/svc/)
* [k-Nearest Neighbors](machine-learning/classification/k-nearest-neighbors/)
* [Naive Bayes](machine-learning/classification/naive-bayes/)
* Regression
* [Least Squares](machine-learning/regression/least-squares/)
* [SVR](machine-learning/regression/svr/)
* Clustering
* [k-Means](machine-learning/clustering/k-means/)
* [DBSCAN](machine-learning/clustering/dbscan/)
* Metric
* [Accuracy](machine-learning/metric/accuracy/)
* [Confusion Matrix](machine-learning/metric/confusion-matrix/)
* Workflow
* [Pipeline](machine-learning/workflow/pipeline)
* Cross Validation
* [Random Split](machine-learning/cross-validation/random-split/)
* [Stratified Random Split](machine-learning/cross-validation/stratified-random-split/)
* Preprocessing
* [Normalization](machine-learning/preprocessing/normalization/)
* [Imputation missing values](machine-learning/preprocessing/imputation-missing-values/)
* Feature Extraction
* [Token Count Vectorizer](machine-learning/feature-extraction/token-count-vectorizer/)
* [Tf-idf Transformer](machine-learning/feature-extraction/tf-idf-transformer/)
* Datasets
* [Array](machine-learning/datasets/array-dataset/)
* [CSV](machine-learning/datasets/csv-dataset/)
* [Files](machine-learning/datasets/files-dataset/)
* Ready to use:
* [Iris](machine-learning/datasets/demo/iris/)
* [Wine](machine-learning/datasets/demo/wine/)
* [Glass](machine-learning/datasets/demo/glass/)
* Math
* [Distance](math/distance/)
* [Matrix](math/matrix/)
* [Statistic](math/statistic/)
## Contribute
- Issue Tracker: github.com/php-ai/php-ml/issues
- Source Code: github.com/php-ai/php-ml
After installation, you can launch the test suite in project root directory (you will need to install dev requirements with Composer)
```
bin/phpunit
```
## License
PHP-ML is released under the MIT Licence. See the bundled LICENSE file for details.
## Author
Arkadiusz Kondas (@ArkadiuszKondas)