mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-12-01 01:03:54 +00:00
7d5c6b15a4
* Fix typo in Features list * Update distance.md documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation
1.5 KiB
1.5 KiB
LeastSquares Linear Regression
Linear model that uses least squares method to approximate solution.
Train
To train a model, simply provide train samples and targets values (as array
). Example:
$samples = [[60], [61], [62], [63], [65]];
$targets = [3.1, 3.6, 3.8, 4, 4.1];
$regression = new LeastSquares();
$regression->train($samples, $targets);
You can train the model using multiple data sets, predictions will be based on all the training data.
Predict
To predict sample target value, use the predict
method with sample to check (as array
). Example:
$regression->predict([64]);
// return 4.06
Multiple Linear Regression
The term multiple attached to linear regression means that there are two or more sample parameters used to predict target. For example you can use: mileage and production year to predict the price of a car.
$samples = [[73676, 1996], [77006, 1998], [10565, 2000], [146088, 1995], [15000, 2001], [65940, 2000], [9300, 2000], [93739, 1996], [153260, 1994], [17764, 2002], [57000, 1998], [15000, 2000]];
$targets = [2000, 2750, 15500, 960, 4400, 8800, 7100, 2550, 1025, 5900, 4600, 4400];
$regression = new LeastSquares();
$regression->train($samples, $targets);
$regression->predict([60000, 1996])
// return 4094.82
Intercept and Coefficients
After you train your model, you can get the intercept and coefficients array.
$regression->getIntercept();
// return -7.9635135135131
$regression->getCoefficients();
// return [array(1) {[0]=>float(0.18783783783783)}]