mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-22 13:05:10 +00:00
7d5c6b15a4
* Fix typo in Features list * Update distance.md documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation
1.0 KiB
1.0 KiB
KNearestNeighbors Classifier
Classifier implementing the k-nearest neighbors algorithm.
Constructor Parameters
- $k - number of nearest neighbors to scan (default: 3)
- $distanceMetric - Distance object, default Euclidean (see distance documentation)
$classifier = new KNearestNeighbors($k=4);
$classifier = new KNearestNeighbors($k=3, new Minkowski($lambda=4));
Train
To train a classifier, simply provide train samples and labels (as array
). Example:
$samples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];
$labels = ['a', 'a', 'a', 'b', 'b', 'b'];
$classifier = new KNearestNeighbors();
$classifier->train($samples, $labels);
You can train the classifier using multiple data sets, predictions will be based on all the training data.
Predict
To predict sample label use the predict
method. You can provide one sample or array of samples:
$classifier->predict([3, 2]);
// return 'b'
$classifier->predict([[3, 2], [1, 5]]);
// return ['b', 'a']