mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-29 00:06:31 +00:00
1.5 KiB
1.5 KiB
Support Vector Regression
Class implementing Epsilon-Support Vector Regression based on libsvm.
Constructor Parameters
- $kernel (int) - kernel type to be used in the algorithm (default Kernel::LINEAR)
- $degree (int) - degree of the Kernel::POLYNOMIAL function (default 3)
- $epsilon (float) - epsilon in loss function of epsilon-SVR (default 0.1)
- $cost (float) - parameter C of C-SVC (default 1.0)
- $gamma (float) - kernel coefficient for ‘Kernel::RBF’, ‘Kernel::POLYNOMIAL’ and ‘Kernel::SIGMOID’. If gamma is ‘null’ then 1/features will be used instead.
- $coef0 (float) - independent term in kernel function. It is only significant in ‘Kernel::POLYNOMIAL’ and ‘Kernel::SIGMOID’ (default 0.0)
- $tolerance (float) - tolerance of termination criterion (default 0.001)
- $cacheSize (int) - cache memory size in MB (default 100)
- $shrinking (bool) - whether to use the shrinking heuristics (default true)
$regression = new SVR(Kernel::LINEAR);
$regression = new SVR(Kernel::LINEAR, $degree = 3, $epsilon=10.0);
Train
To train a model simply provide train samples and targets values (as array
). Example:
use Phpml\Regression\SVR;
use Phpml\SupportVectorMachine\Kernel;
$samples = [[60], [61], [62], [63], [65]];
$targets = [3.1, 3.6, 3.8, 4, 4.1];
$regression = new SVR(Kernel::LINEAR);
$regression->train($samples, $targets);
Predict
To predict sample target value use predict
method. You can provide one sample or array of samples:
$regression->predict([64])
// return 4.03