mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-11 00:00:59 +00:00
7d5c6b15a4
* Fix typo in Features list * Update distance.md documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation
2.3 KiB
2.3 KiB
MLPClassifier
A multilayer perceptron (MLP) is a feedforward artificial neural network model that maps sets of input data onto a set of appropriate outputs.
Constructor Parameters
- $inputLayerFeatures (int) - the number of input layer features
- $hiddenLayers (array) - array with the hidden layers configuration, each value represent number of neurons in each layers
- $classes (array) - array with the different training set classes (array keys are ignored)
- $iterations (int) - number of training iterations
- $learningRate (float) - the learning rate
- $activationFunction (ActivationFunction) - neuron activation function
use Phpml\Classification\MLPClassifier;
$mlp = new MLPClassifier(4, [2], ['a', 'b', 'c']);
// 4 nodes in input layer, 2 nodes in first hidden layer and 3 possible labels.
An Activation Function may also be passed in with each individual hidden layer. Example:
use Phpml\NeuralNetwork\ActivationFunction\PReLU;
use Phpml\NeuralNetwork\ActivationFunction\Sigmoid;
$mlp = new MLPClassifier(4, [[2, new PReLU], [2, new Sigmoid]], ['a', 'b', 'c']);
Instead of configuring each hidden layer as an array, they may also be configured with Layer objects. Example:
use Phpml\NeuralNetwork\Layer;
use Phpml\NeuralNetwork\Node\Neuron;
$layer1 = new Layer(2, Neuron::class, new PReLU);
$layer2 = new Layer(2, Neuron::class, new Sigmoid);
$mlp = new MLPClassifier(4, [$layer1, $layer2], ['a', 'b', 'c']);
Train
To train a MLP, simply provide train samples and labels (as array). Example:
$mlp->train(
$samples = [[1, 0, 0, 0], [0, 1, 1, 0], [1, 1, 1, 1], [0, 0, 0, 0]],
$targets = ['a', 'a', 'b', 'c']
);
Use partialTrain method to train in batches. Example:
$mlp->partialTrain(
$samples = [[1, 0, 0, 0], [0, 1, 1, 0]],
$targets = ['a', 'a']
);
$mlp->partialTrain(
$samples = [[1, 1, 1, 1], [0, 0, 0, 0]],
$targets = ['b', 'c']
);
You can update the learning rate between partialTrain runs:
$mlp->setLearningRate(0.1);
Predict
To predict sample label use the predict
method. You can provide one sample or array of samples:
$mlp->predict([[1, 1, 1, 1], [0, 0, 0, 0]]);
// return ['b', 'c'];
Activation Functions
- BinaryStep
- Gaussian
- HyperbolicTangent
- Parametric Rectified Linear Unit
- Sigmoid (default)
- Thresholded Rectified Linear Unit