mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-25 06:17:34 +00:00
1.6 KiB
1.6 KiB
Token Count Vectorizer
Transform a collection of text samples to a vector of token counts.
Constructor Parameters
- $tokenizer (Tokenizer) - tokenizer object (see below)
- $minDF (float) - ignore tokens that have a samples frequency strictly lower than the given threshold. This value is also called cut-off in the literature. (default 0)
use Phpml\FeatureExtraction\TokenCountVectorizer;
use Phpml\Tokenization\WhitespaceTokenizer;
$vectorizer = new TokenCountVectorizer(new WhitespaceTokenizer());
Transformation
To transform a collection of text samples use transform
method. Example:
$samples = [
'Lorem ipsum dolor sit amet dolor',
'Mauris placerat ipsum dolor',
'Mauris diam eros fringilla diam',
];
$vectorizer = new TokenCountVectorizer(new WhitespaceTokenizer());
// Build the dictionary.
$vectorizer->fit($samples);
// Transform the provided text samples into a vectorized list.
$vectorizer->transform($samples);
// return $samples = [
// [0 => 1, 1 => 1, 2 => 2, 3 => 1, 4 => 1],
// [5 => 1, 6 => 1, 1 => 1, 2 => 1],
// [5 => 1, 7 => 2, 8 => 1, 9 => 1],
//];
Vocabulary
You can extract vocabulary using getVocabulary()
method. Example:
$vectorizer->getVocabulary();
// return $vocabulary = ['Lorem', 'ipsum', 'dolor', 'sit', 'amet', 'Mauris', 'placerat', 'diam', 'eros', 'fringilla'];
Tokenizers
- WhitespaceTokenizer - select tokens by whitespace.
- WordTokenizer - select tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator).