mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2025-01-27 09:08:30 +00:00
c32bf3fe2b
* ability to specify per-layer activation function * some tests for new addition to layer * appease style CI whitespace issue * more flexible addition of layers, and developer can pass Layer object in manually * new test for layer object in mlp constructor * documentation for added MLP functionality
90 lines
2.3 KiB
Markdown
90 lines
2.3 KiB
Markdown
# MLPClassifier
|
|
|
|
A multilayer perceptron (MLP) is a feedforward artificial neural network model that maps sets of input data onto a set of appropriate outputs.
|
|
|
|
## Constructor Parameters
|
|
|
|
* $inputLayerFeatures (int) - the number of input layer features
|
|
* $hiddenLayers (array) - array with the hidden layers configuration, each value represent number of neurons in each layers
|
|
* $classes (array) - array with the different training set classes (array keys are ignored)
|
|
* $iterations (int) - number of training iterations
|
|
* $learningRate (float) - the learning rate
|
|
* $activationFunction (ActivationFunction) - neuron activation function
|
|
|
|
```
|
|
use Phpml\Classification\MLPClassifier;
|
|
$mlp = new MLPClassifier(4, [2], ['a', 'b', 'c']);
|
|
|
|
// 4 nodes in input layer, 2 nodes in first hidden layer and 3 possible labels.
|
|
|
|
```
|
|
|
|
An Activation Function may also be passed in with each individual hidden layer. Example:
|
|
|
|
```
|
|
use Phpml\NeuralNetwork\ActivationFunction\PReLU;
|
|
use Phpml\NeuralNetwork\ActivationFunction\Sigmoid;
|
|
$mlp = new MLPClassifier(4, [[2, new PReLU], [2, new Sigmoid]], ['a', 'b', 'c']);
|
|
```
|
|
|
|
Instead of configuring each hidden layer as an array, they may also be configured with Layer objects. Example:
|
|
|
|
```
|
|
use Phpml\NeuralNetwork\Layer;
|
|
use Phpml\NeuralNetwork\Node\Neuron;
|
|
$layer1 = new Layer(2, Neuron::class, new PReLU);
|
|
$layer2 = new Layer(2, Neuron::class, new Sigmoid);
|
|
$mlp = new MLPClassifier(4, [$layer1, $layer2], ['a', 'b', 'c']);
|
|
```
|
|
|
|
## Train
|
|
|
|
To train a MLP simply provide train samples and labels (as array). Example:
|
|
|
|
|
|
```
|
|
$mlp->train(
|
|
$samples = [[1, 0, 0, 0], [0, 1, 1, 0], [1, 1, 1, 1], [0, 0, 0, 0]],
|
|
$targets = ['a', 'a', 'b', 'c']
|
|
);
|
|
```
|
|
|
|
Use partialTrain method to train in batches. Example:
|
|
|
|
```
|
|
$mlp->partialTrain(
|
|
$samples = [[1, 0, 0, 0], [0, 1, 1, 0]],
|
|
$targets = ['a', 'a']
|
|
);
|
|
$mlp->partialTrain(
|
|
$samples = [[1, 1, 1, 1], [0, 0, 0, 0]],
|
|
$targets = ['b', 'c']
|
|
);
|
|
|
|
```
|
|
|
|
You can update the learning rate between partialTrain runs:
|
|
|
|
```
|
|
$mlp->setLearningRate(0.1);
|
|
```
|
|
|
|
## Predict
|
|
|
|
To predict sample label use predict method. You can provide one sample or array of samples:
|
|
|
|
```
|
|
$mlp->predict([[1, 1, 1, 1], [0, 0, 0, 0]]);
|
|
// return ['b', 'c'];
|
|
|
|
```
|
|
|
|
## Activation Functions
|
|
|
|
* BinaryStep
|
|
* Gaussian
|
|
* HyperbolicTangent
|
|
* Parametric Rectified Linear Unit
|
|
* Sigmoid (default)
|
|
* Thresholded Rectified Linear Unit
|