mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2025-01-26 16:48:25 +00:00
1.6 KiB
1.6 KiB
Support Vector Classification
Classifier implementing Support Vector Machine based on libsvm.
Constructor Parameters
- $kernel (int) - kernel type to be used in the algorithm (default Kernel::LINEAR)
- $cost (float) - parameter C of C-SVC (default 1.0)
- $degree (int) - degree of the Kernel::POLYNOMIAL function (default 3)
- $gamma (float) - kernel coefficient for ‘Kernel::RBF’, ‘Kernel::POLYNOMIAL’ and ‘Kernel::SIGMOID’. If gamma is ‘null’ then 1/features will be used instead.
- $coef0 (float) - independent term in kernel function. It is only significant in ‘Kernel::POLYNOMIAL’ and ‘Kernel::SIGMOID’ (default 0.0)
- $tolerance (float) - tolerance of termination criterion (default 0.001)
- $cacheSize (int) - cache memory size in MB (default 100)
- $shrinking (bool) - whether to use the shrinking heuristics (default true)
- $probabilityEstimates (bool) - whether to enable probability estimates (default false)
$classifier = new SVC(Kernel::LINEAR, $cost = 1000);
$classifier = new SVC(Kernel::RBF, $cost = 1000, $degree = 3, $gamma = 6);
Train
To train a classifier simply provide train samples and labels (as array
). Example:
use Phpml\Classification\SVC;
use Phpml\SupportVectorMachine\Kernel;
$samples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];
$labels = ['a', 'a', 'a', 'b', 'b', 'b'];
$classifier = new SVC(Kernel::LINEAR, $cost = 1000);
$classifier->train($samples, $labels);
Predict
To predict sample label use predict
method. You can provide one sample or array of samples:
$classifier->predict([3, 2]);
// return 'b'
$classifier->predict([[3, 2], [1, 5]]);
// return ['b', 'a']