mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2025-01-23 23:28:24 +00:00
56 lines
1.6 KiB
Markdown
56 lines
1.6 KiB
Markdown
# Token Count Vectorizer
|
|
|
|
Transform a collection of text samples to a vector of token counts.
|
|
|
|
### Constructor Parameters
|
|
|
|
* $tokenizer (Tokenizer) - tokenizer object (see below)
|
|
* $minDF (float) - ignore tokens that have a samples frequency strictly lower than the given threshold. This value is also called cut-off in the literature. (default 0)
|
|
|
|
```
|
|
use Phpml\FeatureExtraction\TokenCountVectorizer;
|
|
use Phpml\Tokenization\WhitespaceTokenizer;
|
|
|
|
$vectorizer = new TokenCountVectorizer(new WhitespaceTokenizer());
|
|
```
|
|
|
|
### Transformation
|
|
|
|
To transform a collection of text samples use `transform` method. Example:
|
|
|
|
```
|
|
$samples = [
|
|
'Lorem ipsum dolor sit amet dolor',
|
|
'Mauris placerat ipsum dolor',
|
|
'Mauris diam eros fringilla diam',
|
|
];
|
|
|
|
$vectorizer = new TokenCountVectorizer(new WhitespaceTokenizer());
|
|
|
|
// Build the dictionary.
|
|
$vectorizer->fit($samples);
|
|
|
|
// Transform the provided text samples into a vectorized list.
|
|
$vectorizer->transform($samples);
|
|
// return $samples = [
|
|
// [0 => 1, 1 => 1, 2 => 2, 3 => 1, 4 => 1],
|
|
// [5 => 1, 6 => 1, 1 => 1, 2 => 1],
|
|
// [5 => 1, 7 => 2, 8 => 1, 9 => 1],
|
|
//];
|
|
|
|
```
|
|
|
|
### Vocabulary
|
|
|
|
You can extract vocabulary using `getVocabulary()` method. Example:
|
|
|
|
```
|
|
$vectorizer->getVocabulary();
|
|
// return $vocabulary = ['Lorem', 'ipsum', 'dolor', 'sit', 'amet', 'Mauris', 'placerat', 'diam', 'eros', 'fringilla'];
|
|
```
|
|
|
|
### Tokenizers
|
|
|
|
* WhitespaceTokenizer - select tokens by whitespace.
|
|
* WordTokenizer - select tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator).
|