php-ml/docs/machine-learning/feature-extraction/token-count-vectorizer.md
Arkadiusz Kondas 365a9baeca update docs
2016-05-07 23:53:42 +02:00

1.4 KiB

Token Count Vectorizer

Transform a collection of text samples to a vector of token counts.

Constructor Parameters

  • $tokenizer (Tokenizer) - tokenizer object (see below)
  • $minDF (float) - ignore tokens that have a samples frequency strictly lower than the given threshold. This value is also called cut-off in the literature. (default 0)
use Phpml\FeatureExtraction\TokenCountVectorizer;
use Phpml\Tokenization\WhitespaceTokenizer;

$vectorizer = new TokenCountVectorizer(new WhitespaceTokenizer());

Transformation

To transform a collection of text samples use transform method. Example:

$samples = [
    'Lorem ipsum dolor sit amet dolor',
    'Mauris placerat ipsum dolor',
    'Mauris diam eros fringilla diam',
];

$vectorizer = new TokenCountVectorizer(new WhitespaceTokenizer());
$vectorizer->transform($samples)
// return $vector = [
//    [0 => 1, 1 => 1, 2 => 2, 3 => 1, 4 => 1],
//    [5 => 1, 6 => 1, 1 => 1, 2 => 1],
//    [5 => 1, 7 => 2, 8 => 1, 9 => 1],
//];
        

Vocabulary

You can extract vocabulary using getVocabulary() method. Example:

$vectorizer->getVocabulary();
// return $vocabulary = ['Lorem', 'ipsum', 'dolor', 'sit', 'amet', 'Mauris', 'placerat', 'diam', 'eros', 'fringilla'];

Tokenizers

  • WhitespaceTokenizer - select tokens by whitespace.
  • WordTokenizer - select tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator).