mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-14 17:34:06 +00:00
7d5c6b15a4
* Fix typo in Features list * Update distance.md documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation * Fix grammatical mistakes in documentation
61 lines
1.9 KiB
Markdown
61 lines
1.9 KiB
Markdown
# Apriori Associator
|
|
|
|
Association rule learning based on [Apriori algorithm](https://en.wikipedia.org/wiki/Apriori_algorithm) for frequent item set mining.
|
|
|
|
### Constructor Parameters
|
|
|
|
* $support - minimum threshold of [support](https://en.wikipedia.org/wiki/Association_rule_learning#Support), i.e. the ratio of samples which contain both X and Y for a rule "if X then Y"
|
|
* $confidence - minimum threshold of [confidence](https://en.wikipedia.org/wiki/Association_rule_learning#Confidence), i.e. the ratio of samples containing both X and Y to those containing X
|
|
|
|
```
|
|
use Phpml\Association\Apriori;
|
|
|
|
$associator = new Apriori($support = 0.5, $confidence = 0.5);
|
|
```
|
|
|
|
### Train
|
|
|
|
To train an associator, simply provide train samples and labels (as `array`). Example:
|
|
|
|
```
|
|
$samples = [['alpha', 'beta', 'epsilon'], ['alpha', 'beta', 'theta'], ['alpha', 'beta', 'epsilon'], ['alpha', 'beta', 'theta']];
|
|
$labels = [];
|
|
|
|
use Phpml\Association\Apriori;
|
|
|
|
$associator = new Apriori($support = 0.5, $confidence = 0.5);
|
|
$associator->train($samples, $labels);
|
|
```
|
|
|
|
You can train the associator using multiple data sets, predictions will be based on all the training data.
|
|
|
|
### Predict
|
|
|
|
To predict sample label use the `predict` method. You can provide one sample or array of samples:
|
|
|
|
```
|
|
$associator->predict(['alpha','theta']);
|
|
// return [['beta']]
|
|
|
|
$associator->predict([['alpha','epsilon'],['beta','theta']]);
|
|
// return [[['beta']], [['alpha']]]
|
|
```
|
|
|
|
### Associating
|
|
|
|
To get generated association rules, simply use the `rules` method.
|
|
|
|
```
|
|
$associator->getRules();
|
|
// return [['antecedent' => ['alpha', 'theta'], 'consequent' => ['beta'], 'support' => 1.0, 'confidence' => 1.0], ... ]
|
|
```
|
|
|
|
### Frequent item sets
|
|
|
|
To generate k-length frequent item sets, simply use the `apriori` method.
|
|
|
|
```
|
|
$associator->apriori();
|
|
// return [ 1 => [['alpha'], ['beta'], ['theta'], ['epsilon']], 2 => [...], ...]
|
|
```
|