mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-11 08:10:56 +00:00
191 lines
5.0 KiB
PHP
191 lines
5.0 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace Phpml\Classification\Ensemble;
|
|
|
|
use Phpml\Classification\Linear\DecisionStump;
|
|
use Phpml\Classification\Classifier;
|
|
use Phpml\Helper\Predictable;
|
|
use Phpml\Helper\Trainable;
|
|
|
|
class AdaBoost implements Classifier
|
|
{
|
|
use Predictable, Trainable;
|
|
|
|
/**
|
|
* Actual labels given in the targets array
|
|
* @var array
|
|
*/
|
|
protected $labels = [];
|
|
|
|
/**
|
|
* @var int
|
|
*/
|
|
protected $sampleCount;
|
|
|
|
/**
|
|
* @var int
|
|
*/
|
|
protected $featureCount;
|
|
|
|
/**
|
|
* Number of maximum iterations to be done
|
|
*
|
|
* @var int
|
|
*/
|
|
protected $maxIterations;
|
|
|
|
/**
|
|
* Sample weights
|
|
*
|
|
* @var array
|
|
*/
|
|
protected $weights = [];
|
|
|
|
/**
|
|
* Base classifiers
|
|
*
|
|
* @var array
|
|
*/
|
|
protected $classifiers = [];
|
|
|
|
/**
|
|
* Base classifier weights
|
|
*
|
|
* @var array
|
|
*/
|
|
protected $alpha = [];
|
|
|
|
/**
|
|
* ADAptive BOOSTing (AdaBoost) is an ensemble algorithm to
|
|
* improve classification performance of 'weak' classifiers such as
|
|
* DecisionStump (default base classifier of AdaBoost).
|
|
*
|
|
*/
|
|
public function __construct(int $maxIterations = 30)
|
|
{
|
|
$this->maxIterations = $maxIterations;
|
|
}
|
|
|
|
/**
|
|
* @param array $samples
|
|
* @param array $targets
|
|
*/
|
|
public function train(array $samples, array $targets)
|
|
{
|
|
// Initialize usual variables
|
|
$this->labels = array_keys(array_count_values($targets));
|
|
if (count($this->labels) != 2) {
|
|
throw new \Exception("AdaBoost is a binary classifier and can only classify between two classes");
|
|
}
|
|
|
|
// Set all target values to either -1 or 1
|
|
$this->labels = [1 => $this->labels[0], -1 => $this->labels[1]];
|
|
foreach ($targets as $target) {
|
|
$this->targets[] = $target == $this->labels[1] ? 1 : -1;
|
|
}
|
|
|
|
$this->samples = array_merge($this->samples, $samples);
|
|
$this->featureCount = count($samples[0]);
|
|
$this->sampleCount = count($this->samples);
|
|
|
|
// Initialize AdaBoost parameters
|
|
$this->weights = array_fill(0, $this->sampleCount, 1.0 / $this->sampleCount);
|
|
$this->classifiers = [];
|
|
$this->alpha = [];
|
|
|
|
// Execute the algorithm for a maximum number of iterations
|
|
$currIter = 0;
|
|
while ($this->maxIterations > $currIter++) {
|
|
// Determine the best 'weak' classifier based on current weights
|
|
// and update alpha & weight values at each iteration
|
|
list($classifier, $errorRate) = $this->getBestClassifier();
|
|
$alpha = $this->calculateAlpha($errorRate);
|
|
$this->updateWeights($classifier, $alpha);
|
|
|
|
$this->classifiers[] = $classifier;
|
|
$this->alpha[] = $alpha;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the classifier with the lowest error rate with the
|
|
* consideration of current sample weights
|
|
*
|
|
* @return Classifier
|
|
*/
|
|
protected function getBestClassifier()
|
|
{
|
|
// This method works only for "DecisionStump" classifier, for now.
|
|
// As a future task, it will be generalized enough to work with other
|
|
// classifiers as well
|
|
$minErrorRate = 1.0;
|
|
$bestClassifier = null;
|
|
for ($i=0; $i < $this->featureCount; $i++) {
|
|
$stump = new DecisionStump($i);
|
|
$stump->setSampleWeights($this->weights);
|
|
$stump->train($this->samples, $this->targets);
|
|
|
|
$errorRate = $stump->getTrainingErrorRate();
|
|
if ($errorRate < $minErrorRate) {
|
|
$bestClassifier = $stump;
|
|
$minErrorRate = $errorRate;
|
|
}
|
|
}
|
|
|
|
return [$bestClassifier, $minErrorRate];
|
|
}
|
|
|
|
/**
|
|
* Calculates alpha of a classifier
|
|
*
|
|
* @param float $errorRate
|
|
* @return float
|
|
*/
|
|
protected function calculateAlpha(float $errorRate)
|
|
{
|
|
if ($errorRate == 0) {
|
|
$errorRate = 1e-10;
|
|
}
|
|
return 0.5 * log((1 - $errorRate) / $errorRate);
|
|
}
|
|
|
|
/**
|
|
* Updates the sample weights
|
|
*
|
|
* @param DecisionStump $classifier
|
|
* @param float $alpha
|
|
*/
|
|
protected function updateWeights(DecisionStump $classifier, float $alpha)
|
|
{
|
|
$sumOfWeights = array_sum($this->weights);
|
|
$weightsT1 = [];
|
|
foreach ($this->weights as $index => $weight) {
|
|
$desired = $this->targets[$index];
|
|
$output = $classifier->predict($this->samples[$index]);
|
|
|
|
$weight *= exp(-$alpha * $desired * $output) / $sumOfWeights;
|
|
|
|
$weightsT1[] = $weight;
|
|
}
|
|
|
|
$this->weights = $weightsT1;
|
|
}
|
|
|
|
/**
|
|
* @param array $sample
|
|
* @return mixed
|
|
*/
|
|
public function predictSample(array $sample)
|
|
{
|
|
$sum = 0;
|
|
foreach ($this->alpha as $index => $alpha) {
|
|
$h = $this->classifiers[$index]->predict($sample);
|
|
$sum += $h * $alpha;
|
|
}
|
|
|
|
return $this->labels[ $sum > 0 ? 1 : -1];
|
|
}
|
|
}
|