David Monllaó e83f7b95d5 Fix activation functions support (#163)
- Backpropagation using the neuron activation functions derivative
- instead of hardcoded sigmoid derivative
- Added missing activation functions derivatives
- Sigmoid forced for the output layer
- Updated ThresholdedReLU default threshold to 0 (acts as a ReLU)
- Unit tests for derivatives
- Unit tests for classifiers using different activation functions
- Added missing docs
2018-01-09 11:09:59 +01:00

56 lines
1.3 KiB
PHP

<?php
declare(strict_types=1);
namespace Phpml\Tests\NeuralNetwork\ActivationFunction;
use Phpml\NeuralNetwork\ActivationFunction\PReLU;
use PHPUnit\Framework\TestCase;
class PReLUTest extends TestCase
{
/**
* @dataProvider preluProvider
*/
public function testPReLUActivationFunction($beta, $expected, $value): void
{
$prelu = new PReLU($beta);
$this->assertEquals($expected, $prelu->compute($value), '', 0.001);
}
public function preluProvider(): array
{
return [
[0.01, 0.367, 0.367],
[0.0, 1, 1],
[0.3, -0.3, -1],
[0.9, 3, 3],
[0.02, -0.06, -3],
];
}
/**
* @dataProvider preluDerivativeProvider
*/
public function testPReLUDerivative($beta, $expected, $value): void
{
$prelu = new PReLU($beta);
$activatedValue = $prelu->compute($value);
$this->assertEquals($expected, $prelu->differentiate($value, $activatedValue));
}
public function preluDerivativeProvider(): array
{
return [
[0.5, 0.5, -3],
[0.5, 1, 0],
[0.5, 1, 1],
[0.01, 1, 1],
[1, 1, 1],
[0.3, 1, 0.1],
[0.1, 0.1, -0.1],
];
}
}