php-ml/docs/machine-learning/classification/svc.md
David Monllaó c1b1a5d6ac Support for multiple training datasets (#38)
* Multiple training data sets allowed

* Tests with multiple training data sets

* Updating docs according to #38

Documenting all models which predictions will be based on all
training data provided.

Some models already supported multiple training data sets.
2017-02-01 19:06:38 +01:00

1.8 KiB
Raw Blame History

Support Vector Classification

Classifier implementing Support Vector Machine based on libsvm.

Constructor Parameters

  • $kernel (int) - kernel type to be used in the algorithm (default Kernel::LINEAR)
  • $cost (float) - parameter C of C-SVC (default 1.0)
  • $degree (int) - degree of the Kernel::POLYNOMIAL function (default 3)
  • $gamma (float) - kernel coefficient for Kernel::RBF, Kernel::POLYNOMIAL and Kernel::SIGMOID. If gamma is null then 1/features will be used instead.
  • $coef0 (float) - independent term in kernel function. It is only significant in Kernel::POLYNOMIAL and Kernel::SIGMOID (default 0.0)
  • $tolerance (float) - tolerance of termination criterion (default 0.001)
  • $cacheSize (int) - cache memory size in MB (default 100)
  • $shrinking (bool) - whether to use the shrinking heuristics (default true)
  • $probabilityEstimates (bool) - whether to enable probability estimates (default false)
$classifier = new SVC(Kernel::LINEAR, $cost = 1000);
$classifier = new SVC(Kernel::RBF, $cost = 1000, $degree = 3, $gamma = 6);

Train

To train a classifier simply provide train samples and labels (as array). Example:

use Phpml\Classification\SVC;
use Phpml\SupportVectorMachine\Kernel;

$samples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];
$labels = ['a', 'a', 'a', 'b', 'b', 'b'];

$classifier = new SVC(Kernel::LINEAR, $cost = 1000);
$classifier->train($samples, $labels);

You can train the classifier using multiple data sets, predictions will be based on all the training data.

Predict

To predict sample label use predict method. You can provide one sample or array of samples:

$classifier->predict([3, 2]);
// return 'b'

$classifier->predict([[3, 2], [1, 5]]);
// return ['b', 'a']