syncthing/vendor/github.com/cznic/mathutil/poly.go

112 lines
2.5 KiB
Go
Raw Normal View History

// Copyright (c) 2016 The mathutil Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mathutil
import (
"fmt"
)
func abs(n int) uint64 {
if n >= 0 {
return uint64(n)
}
return uint64(-n)
}
// QuadPolyDiscriminant returns the discriminant of a quadratic polynomial in
// one variable of the form a*x^2+b*x+c with integer coefficients a, b, c, or
// an error on overflow.
//
// ds is the square of the discriminant. If |ds| is a square number, d is set
// to sqrt(|ds|), otherwise d is < 0.
func QuadPolyDiscriminant(a, b, c int) (ds, d int, _ error) {
if 2*BitLenUint64(abs(b)) > IntBits-1 ||
2+BitLenUint64(abs(a))+BitLenUint64(abs(c)) > IntBits-1 {
return 0, 0, fmt.Errorf("overflow")
}
ds = b*b - 4*a*c
s := ds
if s < 0 {
s = -s
}
d64 := SqrtUint64(uint64(s))
if d64*d64 != uint64(s) {
return ds, -1, nil
}
return ds, int(d64), nil
}
// PolyFactor describes an irreducible factor of a polynomial in one variable
// with integer coefficients P, Q of the form P*x+Q.
type PolyFactor struct {
P, Q int
}
// QuadPolyFactors returns the content and the irreducible factors of the
// primitive part of a quadratic polynomial in one variable with integer
// coefficients a, b, c of the form a*x^2+b*x+c in integers, or an error on
// overflow.
//
// If the factorization in integers does not exists, the return value is (nil,
// nil).
//
// See also:
// https://en.wikipedia.org/wiki/Factorization_of_polynomials#Primitive_part.E2.80.93content_factorization
func QuadPolyFactors(a, b, c int) (content int, primitivePart []PolyFactor, _ error) {
content = int(GCDUint64(abs(a), GCDUint64(abs(b), abs(c))))
switch {
case content == 0:
content = 1
case content > 0:
if a < 0 || a == 0 && b < 0 {
content = -content
}
}
a /= content
b /= content
c /= content
if a == 0 {
if b == 0 {
return content, []PolyFactor{{0, c}}, nil
}
if b < 0 && c < 0 {
b = -b
c = -c
}
if b < 0 {
b = -b
c = -c
}
return content, []PolyFactor{{b, c}}, nil
}
ds, d, err := QuadPolyDiscriminant(a, b, c)
if err != nil {
return 0, nil, err
}
if ds < 0 || d < 0 {
return 0, nil, nil
}
x1num := -b + d
x1denom := 2 * a
gcd := int(GCDUint64(abs(x1num), abs(x1denom)))
x1num /= gcd
x1denom /= gcd
x2num := -b - d
x2denom := 2 * a
gcd = int(GCDUint64(abs(x2num), abs(x2denom)))
x2num /= gcd
x2denom /= gcd
return content, []PolyFactor{{x1denom, -x1num}, {x2denom, -x2num}}, nil
}