* lib/fs: Add fakefs
This adds a new fake filesystem type. It's described rather extensively
in fakefs.go, but the main point is that it's for testing: when you want
to spin up a Syncthing and have a terabyte or two of random files that
can be synced somewhere, or an inifitely large filesystem to sync files
into.
It has pseudorandom properties such that data read from one fakefs can
be written into another fakefs and read back and it will look
consistent, without any of the data actually being stored.
To use:
<folder id="default" path="whatever" ...>
<filesystemType>fake</filesystemType>
This will create an empty fake filesystem. You can also specify that it
should be prefilled with files:
<folder id="default" path="whatever?size=2000000" ...>
<filesystemType>fake</filesystemType>
This will create a filesystem filled with 2TB of random data that can be
scanned and synced. There are more options, see fakefs.go.
Prefilled data is based on a deterministic seed, so you can index the
data and restart Syncthing and the index is still correct for all the
stored data.
The previous "Bad Request" was really confusing as it implies it's
somethign wrong with the request, which there isn't - the problem is
that server configuration forbids the request.
This removes the user and group juggling, which would fail when given
for example a PGID that already existed as the "syncthing" group could
then not be created with that PGID. It's not reasonable to expect the
user to know which group/user names/IDs are already present in the
Docker image.
Instead we now just launch under the specified IDs, while manually
setting the HOME env var to give us a home directory - the only thing we
needed the user entry for anyway.
Also updates to Go 1.11 and building without upgrades instead of
disabling by env var.
* release:
lib/model: Fixes on receive-only test setup and pulling (#5136)
lib/fs: Don't add path separators at end of path (fixes#5144) (#5146)
lib/fs: Evaluate root when watching not on fs creation (fixes#5043) (#5105)
The problem here is that we would update the sequence index before
updating the FileInfos, which would result in a high sequence number
pointing to a low-sequence FileInfo. The index sender would pick up the
high sequence number, send the old file, and think everything was good.
On the receiving side the old file is a no-op and ignored. The file
remains out of sync until another update for it happens.
This fixes that by correcting the order of operations in the database
update: first we remove old sequence index entries, then we update the
FileInfos (which now don't have anything pointing to them) and then we
add the sequence indexes (which the index sender can see).
The other option is to add "proper" transactions where required at the
database layer. I actually have a branch for that, but it's literally
thousands of lines of diff and I'm putting that off for another day as
this solves the problem...
The problem here is that we would update the sequence index before
updating the FileInfos, which would result in a high sequence number
pointing to a low-sequence FileInfo. The index sender would pick up the
high sequence number, send the old file, and think everything was good.
On the receiving side the old file is a no-op and ignored. The file
remains out of sync until another update for it happens.
This fixes that by correcting the order of operations in the database
update: first we remove old sequence index entries, then we update the
FileInfos (which now don't have anything pointing to them) and then we
add the sequence indexes (which the index sender can see).
The other option is to add "proper" transactions where required at the
database layer. I actually have a branch for that, but it's literally
thousands of lines of diff and I'm putting that off for another day as
this solves the problem...