This commit moves the Environment field from the Table to its Options, and properly gets rid of the name ‘columns’ from the last commit.
Having it in the Options is important, because it means it can be generated from some command-line options. Also, it reduces the number of arguments that need to be passed to Table::new; there would have been 4 with the inclusion of the Environment, but by moving some of the code into the function, we can avoid this (and any further arguments).
The views have been renamed to be the Optionses of their module; now the options for the Table — Columns — has followed suit.
This works out, because the table module depended on everything in the columns module. It opens the door for other only-table-specific things to be included.
The casualty was that by making it non-Clone and non-PartialEq, a bunch of other #[derive]-d types had to have their derivions removed too.
The Environment struct only used the Default trait so it could have the same call for both Environment<UsersCache> and Environment<MockUsers>. There’s no reason to keep it around anymore.
Adding a header row automatically added the widths to the table and returned the row, but adding a file’s row didn’t add the widths. Now they’re consistent.
By having the widths be in a separate type, we can separate the two out later, rather than having one refer to the other.
This commit ties a table’s Environment to the fact that it contains columns.
Previously, the Details view would get its Environment, and then use those fields to actually display the details in the table: except for the case where we’re only displaying a tree, when it would just be ignored, instead.
This was caused by the “no columns” case using a Vec of no Columns behind the scenes, rather than disabling the table entirely; much like how a tap isn’t a zero-length swipe, the code should have been updated to reflect this. Now, the Environment is only created if it’s going to be used.
Also, fix a double-mutex-lock: the mutable Table had to be accessed under a lock, but the table contained a UsersCache, which *also* had to be accessed under a lock. This was changed so that the table is only updated *after* the threads have all been joined, so there’s no need for any lock at all. May fix#141, but not sure.
This commit extracts the common table element from the details and grid_details modules, and makes it its own reusable thing.
- A Table no longer holds the values it’s rendering; it just holds a continually-updated version of the maximum widths for each column. This means that all of the resulting values that turn into Rows — which here are either files, or file eggs — need to be stored *somewhere*, and that somewhere is a secondary vector that gets passed around and modified alongside the Table.
- Likewise, all the mutable methods that were on Table that added a Row now *return* the row that would have been added, hoping that the row does get stored somewhere. (It does, don’t worry.)
- Because rendering with mock users is tested in the user-field-rendering module, we don’t need to bother threading different types of U through the Environment, so now it’s just been specialised to UsersCache.
- Accidentally speed up printing a table by not buffering its entire output first when not necessary.
Instead of having render methods on the types that are now called Options, create new Render structs (one per view) and execute them. This means that it’s easier to extract methods from them — some of them are pretty long.
Also, remove the GridDetails struct, which got consumed by Mode (mostly)
By introducing another indirection between the structs that command-line options get parsed into and the structs that get rendered, it should be easier to refactor that horrible function in view.rs.
All four view types — lines, grid, details, and grid-details — held their own colours and classify flags.
This didn’t make any sense for the grid-details view, which had to pick which one to use: the values were in there twice.
It also gave the Table in the details view access to more information than it really should have had.
Now, those two flags are returned separately from the view “mode”, which is the new term for one of those four things.
This commit moves file, dir, and the feature modules into one parent 'fs' module. Now there are three main 'areas' of the code: main and options, the filesystem-touching code, and the output-displaying code.
It should be the case that nothing in 'output' touches 'std::fs'.
- Users v0.5.1, which renames OSUsers to UsersCache
- Locale v0.2, which returns to libc v0.1
- Datetime v0.4.2, which mimics the locale update, and puts timezone definitions in:
- Zoneinfo-data, which is needed to obtain the current timezone
This makes use of a change in the `users` crate to change which parts of exa's code are accessed under a `Mutex`. The change is that the methods on `Users` can now take just `&self`, instead of `&mut self`. This has a knock-on effect in exa, as many methods now don't need to take a mutable `&self`, meaning that the Mutex can be moved to only containing the users information instead of having to be queried for *every column*. This means that threading should now be a lot faster, as fewer parts have to be executed on a single thread.
The main change to facilitate this is that `Table`'s structure has changed: everything environmental that gets loaded at the beginning is now in an `Environment` struct, which can be mocked out if necessary, as one of `Table`'s fields. (They were kind of in a variety of places before.)
Casualties include having to make some of the test code more verbose, as it explicitly takes the columns and environment as references rather than values, and those both need to be put on the stack beforehand. Also, all the colours are now hidden behind an `opts` field, so a lot of the rendering code is more verbose too (but not greatly so).
Because, strictly speaking, it's not a length, it's a width!
Also, re-order some struct constructors so that they're no longer
order-dependent (it's no longer the case that a value will be borrowed for one
field then consumed in another, meaning they have to be ordered in a certain
way to compile. Now the value is just worked out beforehand and the fields can
be specified in any order)
This commit introduces the `output::cell::DisplayWidth` struct, which
encapsulates the Unicode *display width* of a string in a struct that makes it
less easily confused with the *length* of a string.
The use of this type means that it's now harder to accidentally use a string's
length-in-bytes as its width. I've fixed at least one case in the code where
this was being done!
The only casualty is that it introduces a dependency on the output module from
the file module, which will be removed next commit.
A recent change to ansi-term [1] means that `ANSIString`s can now hold either
owned *or* borrowed data (Rust calls this the Cow type). This means that we
can delay formatting ANSIStrings into ANSI-control-code-formatted strings
until it's absolutely necessary. The process for doing this was:
1. Replace the `Cell` type with a `TextCell` type that holds a vector of
`ANSIString` values instead of a formatted string. It still does the
width tracking.
2. Rework the details module's `render` functions to emit values of this
type.
3. Similarly, rework the functions that produce cells containing filenames
to use a `File` value's `name` field, which is an owned `String` that
can now be re-used.
4. Update the printing, formatting, and width-calculating code in the
details and grid-details views to produce a table by adding vectors
together instead of adding strings together, delaying the formatting as
long as it can.
This results in fewer allocations (as fewer `String` values are produced), and
makes the API tidier (as fewer `String` values are being passed around without
having their contents specified).
This also paves the way to Windows support, or at least support for
non-ANSI terminals: by delaying the time until strings are formatted,
it'll now be easier to change *how* they are formatted.
Casualties include:
- Bump to ansi_term v0.7.1, which impls `PartialEq` and `Debug` on
`ANSIString`.
- The grid_details and lines views now need to take a vector of files, rather
than a borrowed slice, so the filename cells produced now own the filename
strings that get taken from files.
- Fixed the signature of `File#link_target` to specify that the
file produced refers to the same directory, rather than some phantom
directory with the same lifetime as the file. (This was wrong from the
start, but it broke nothing until now)
References:
[1]: ansi-term@f6a6579ba8174de1cae64d181ec04af32ba2a4f0
This cleans up the options module, moving the structs that were *only* in use for the columns view out of it.
The new OptionSet trait is used to add the ‘deduce’ methods that used to be present on the values.
Had to thread the value in at display-time to get it to only query the attributes once!
This isn't the nicest way to do it, but this *is* a bit of an edge-case (it's the only thing where a column depends on something that gets calculated later)
This changes the way extended attributes (xattrs) are printed. Before, they were artificially printed out on their own line both in lines mode *and* details mode, which looked a bit weird. Now, they are additional 'child nodes' of that item that get printed alongside errors.
All this allows all the 'extra info' that is going to be present for very few entries to be consolidated and listed in the same way, without resorting to extra printlns.
As a great side-effect, it allows taking out some of the more redundant code in the Table impl -- it is now *always* going to be in create-child-nodes mode, as *any* file now can, not only when we have the --tree flag in use.
Also, it now actually displays errors when failing to read the extended attributes, such as if the user doesn't have permission to read them.
The extended attribute flag has been temporarily disabled while I work out the best way to do it!
Previously, each time it tried to render a table (to check its width), it both re-queried the filesystem and re-formatted the values into coloured strings.
These values are now calculated only once before the table is drawn, and are used repeatedly throughout.
Although it looks as though there's more `clone()`ing going on than before, it used to be recalculating things and storing them as vectors anyway, so the memory would still be used in any case.
This commit adds --grid, which, when used with --long, will split the details into multiple columns. Currently this is just 2 columns, but in the future it will be based on the width of the terminal.
In order to do this, I had to do two things:
1. Add a `links` parameter to the filename function, which disables the printing of the arrow and link target in the details view. When this is active, the columns get way too large, and it becomes not worth it.
2. Change the `print_table` function from actually printing the table to stdout to returning a list of `Cells` based on the table. This list then gets its width measured to calculate the width of the resulting table.