Commit Graph

34 Commits

Author SHA1 Message Date
Jonathan Baldie
c32bf3fe2b Configure an Activation Function per hidden layer (#208)
* ability to specify per-layer activation function

* some tests for new addition to layer

* appease style CI whitespace issue

* more flexible addition of layers, and developer can pass Layer object in manually

* new test for layer object in mlp constructor

* documentation for added MLP functionality
2018-02-01 23:15:36 +01:00
Yuji Uchiyama
9f0723f7d0 Fix documentation of ClassificationReport (#209)
* Fix values in example code

* Remove inconsistent empty lines
2018-01-31 19:20:50 +01:00
Yuji Uchiyama
554c86af68 Choose averaging method in classification report (#205)
* Fix testcases of ClassificationReport

* Fix averaging method in ClassificationReport

* Fix divided by zero if labels are empty

* Fix calculation of f1score

* Add averaging methods (not completed)

* Implement weighted average method

* Extract counts to properties

* Fix default to macro average

* Implement micro average method

* Fix style

* Update docs

* Fix styles
2018-01-29 18:06:21 +01:00
David Monllaó
e83f7b95d5 Fix activation functions support (#163)
- Backpropagation using the neuron activation functions derivative
- instead of hardcoded sigmoid derivative
- Added missing activation functions derivatives
- Sigmoid forced for the output layer
- Updated ThresholdedReLU default threshold to 0 (acts as a ReLU)
- Unit tests for derivatives
- Unit tests for classifiers using different activation functions
- Added missing docs
2018-01-09 11:09:59 +01:00
David Monllaó
c4ad117d28 Ability to update learningRate in MLP (#160)
* Allow people to update the learning rate

* Test for learning rate setter
2017-12-05 21:09:06 +01:00
David Monllaó
b1d40bfa30 Change from theta to learning rate var name in NN (#159) 2017-11-20 23:39:50 +01:00
David Monllaó
f7537c049a documentation add tokenizer->fit required to build the dictionary (#155) 2017-11-16 21:40:11 +01:00
David Monllaó
de50490154 Neural networks partial training and persistency (#91)
* Neural networks partial training and persistency

* cs fixes

* Add partialTrain to nn docs

* Test for invalid partial training classes provided
2017-05-23 09:03:05 +02:00
David Monllaó
4af8449b1c Neural networks improvements (#89)
* MultilayerPerceptron interface changes

- Signature closer to other algorithms
- New predict method
- Remove desired error
- Move maxIterations to constructor

* MLP tests for multiple hidden layers and multi-class

* Update all MLP-related tests

* coding style fixes

* Backpropagation included in multilayer-perceptron
2017-05-18 00:07:14 +02:00
David Monllaó
c0463ae087 Fix wrong docs references (#79) 2017-04-13 21:34:55 +02:00
Bill Nunney
8be19567a2 Update imputation example to use transform method (#57) 2017-03-09 20:41:15 +01:00
David Monllaó
8f122fde90 Persistence class to save and restore models (#37)
* Models manager with save/restore capabilities

* Refactoring dataset exceptions

* Persistency layer docs

* New tests for serializable estimators

* ModelManager static methods to instance methods
2017-02-02 09:03:09 +01:00
David Monllaó
c1b1a5d6ac Support for multiple training datasets (#38)
* Multiple training data sets allowed

* Tests with multiple training data sets

* Updating docs according to #38

Documenting all models which predictions will be based on all
training data provided.

Some models already supported multiple training data sets.
2017-02-01 19:06:38 +01:00
Robert Boloc
aace5ff022 Fix documentation links 2017-01-05 20:37:48 +00:00
Ken Seah
8a0a9f09e2 Update array-dataset.md
Method has already changed name to getTargets() instead of getLabels()
2016-11-04 00:03:49 +11:00
Patrick Florek
90038befa9 Apply comments / coding styles
* Remove user-specific gitignore
* Add return type hints
* Avoid global namespace in docs
* Rename rules -> getRules
* Split up rule generation

Todo:
* Move set theory out to math
* Extract rule generation
2016-09-02 00:26:01 +02:00
Patrick Florek
c8bd8db601 # Association rule learning - Apriori algorithm
* Generating frequent k-length item sets
* Generating rules based on frequent item sets
* Algorithm has exponential complexity, be aware of it
* Apriori algorithm is split into apriori and candidates method
* Second step rule generation is implemented by rules method
* Internal methods are invoked for fine grain unit tests
* Wikipedia's train samples and an alternative are provided for test cases
* Small documentation for public interface is also shipped
2016-08-23 15:44:53 +02:00
Arkadiusz Kondas
3599367ce8 Add docs for neural network 2016-08-14 19:14:56 +02:00
Arkadiusz Kondas
963cfea551 add ClassificationReport docs 2016-07-19 22:17:03 +02:00
Arkadiusz Kondas
7abee3061a docs for files dataset and php-cs-fixer 2016-07-16 23:56:52 +02:00
Arkadiusz Kondas
7c0767c15a create docs for tf-idf transformer 2016-07-12 00:21:34 +02:00
Arkadiusz Kondas
ba8927459c add docs for ConfusionMatrix 2016-07-12 00:11:18 +02:00
Arkadiusz Kondas
bb35d045ba add docs for Pipeline 2016-07-12 00:00:17 +02:00
Arkadiusz Kondas
ee6ea3b850 create docs for StratifiedRandomSplit 2016-07-11 00:07:07 +02:00
Arkadiusz Kondas
d19490d62a update docs example 2016-05-31 18:02:30 +02:00
Arkadiusz Kondas
325427c723 update missing docs 2016-05-14 21:30:13 +02:00
Arkadiusz Kondas
ccfa38ba4d wine and glass demo dataset docs 2016-05-10 23:44:28 +02:00
Arkadiusz Kondas
77647fda45 update readme 2016-05-09 23:52:09 +02:00
Arkadiusz Kondas
365a9baeca update docs 2016-05-07 23:53:42 +02:00
Arkadiusz Kondas
5950af6072 update and refactor documentation 2016-05-02 13:49:19 +02:00
Arkadiusz Kondas
d2e0ce446c update classifier docs 2016-04-16 21:41:37 +02:00
Arkadiusz Kondas
6f5f190600 docs for manhattan distance 2016-04-15 22:32:20 +02:00
Arkadiusz Kondas
50fbcddfc4 create docs for distance metrics functions 2016-04-13 21:20:55 +02:00
Arkadiusz Kondas
5be2147784 creat docs files 2016-04-09 00:36:48 +02:00